В неорганической химии реакция замещения протекает между. Неорганическая химия - это что такое? Неорганическая химия в школьной программе

Темы кодификатора ЕГЭ: Классификация химических реакций в органической и неорганической химии.

Химические реакции — это такой вид взаимодействия частиц, когда из одних химических веществ получаются другие, отличающиеся от них по свойствам и строению. Вещества, которые вступают в реакцию — реагенты . Вещества, которые образуются в ходе химической реакции — продукты .

В ходе химической реакции разрушаются химические связи, и образуются новые.

В ходе химических реакций не меняются атомы, участвующие в реакции. Меняется только порядок соединения атомов в молекулах. Таким образов, число атомов одного и того же вещества в ходе химической реакции не меняется .

Химические реакции классифицируют по разным признакам. Рассмотрим основные виды классификации химических реакций.

Классификация по числу и составу реагирующих веществ

По составу и числу реагирующих веществ разделяют реакции, протекающие без изменения состава веществ, и реакции, протекающие с изменением состава веществ:

1. Реакции, протекающие без изменения состава веществ (A → B)

К таким реакциям в неорганической химии можно отнести аллотропные переходы простых веществ из одной модификации в другую:

S ромбическая → S моноклинная.

В органической химии к таким реакциям относятся реакции изомериза-ции , когда из одного изомера под действием катализатора и внешних факторов получается другой (как правило, структурный изомер).

Например , изомеризация бутана в 2-метилпропан (изобутан):

CH 3 -CH 2 -CH 2 -CH 3 → CH 3 -CH(CH 3)-CH 3 .

2. Реакции, протекающие с изменением состава

  • Реакции соединения (A + B + … → D) — это такие реакции, в которых из двух и более веществ образуется одно новое сложное вещество. В неорганической химии к реакция соединения относятся реакции горения простых веществ, взаимодействие основных оксидов с кислотными и др. В органической химии такие реакции называются реакциями присоединения . Реакции присоединения это такие реакции, в ходе которых к рассматриваемой органической молекуле присоединяется другая молекула. К реакциям присоединения относятся реакции гидрирования (взаимодействие с водородом), гидратации (присоединение воды), гидрогалогенирования (присоединение галогеноводорода), полимеризация (присоединение молекул друг к другу с образованием длинной цепочки) и др.

Например , гидратация:

CH 2 =CH 2 + H 2 O → CH 3 -CH 2 -OH

  • Реакции разложения (A B + C + …) — это такие реакции, в ходе которых из одной сложной молекулы образуется несколько менее сложных или простых веществ. При этом могут образовываться как простые, так и сложные вещества.

Например , при разложении пероксида водорода :

2H 2 O 2 → 2H 2 O + O 2 .

В органической химии разделяют собственно реакции разложения и реакции отщепления. Реакции отщепления (элиминирования) это такие реакции, в ходе которых происходит отрыв атомов или атомных групп от исходной молекулы при сохранении ее углеродного скелета.

Например , реакция отщепления водорода (дегидрирование) от пропана :

C 3 H 8 → C 3 H 6 + H 2

Как правило, в названии таких реакций есть приставка «де». Реакции разложения в органической химии происходят, как правило, с разрывом углеродной цепи.

Например , реакция крекинга бутана (расщепление на более простые молекулы при нагревании или под действием катализатора):

C 4 H 10 → C 2 H 4 + C 2 H 6

  • Реакции замещения — это такие реакции, в ходе которых атомы или группы атомов одного вещества замещаются на атомы или группы атомов другого вещества. В неорганической химии эти реакции происходят по схеме:

AB + C = AC + B .

Например , более активные галогены вытесняют менее активные из соединений. Взаимодействие йодида калия с хлором :

2KI + Cl 2 → 2KCl + I 2 .

Замещаться могут как отдельные атомы, так и молекулы.

Например , при сплавлении менее летучие оксиды вытесняют более летучие из солей. Так, нелетучий оксид кремния вытесняет оксид углерода из карбоната натрия при сплавлении:

Na 2 CO 3 + SiO 2 → Na 2 SiO 3 + CO 2

В органической химии реакции замещения — это такие реакции, в ходе которых часть органической молекулы замещается на другие частицы . При этом замещенная частица, как правило, соединяется с частью молекулы-заместителя.

Например , реакция хлорирования метана :

CH 4 + Cl 2 → CH 3 Cl + HCl

По числу частиц и составу продуктов взаимодействия эта реакция больше похожа на реакцию обмена. Тем не менее, по механизму такая реакция является реакцией замещения.

  • Реакции обмена — это такие реакции, в ходе которых два сложных вещества обмениваются своими составными частями:

AB + CD = AC + BD

К реакциям обмена относятся реакции ионного обмена , протекающие в растворах; реакции, иллюстрирующие кислотно-основные свойства веществ и другие.

Пример реакции обмена в неорганической химии — нейтрализация соляной кислоты щелочью :

NaOH + HCl = NaCl + H 2 O

Пример реакции обмена в органической химии — щелочной гидролиз хлорэтана :

CH 3 -CH 2 -Cl + KOH = CH 3 -CH 2 -OH + KCl

Классификация химических реакций по изменению степени окисления элементов, образующих вещества

По изменению степени окисления элементов химические реакции делят на окислительно-восстановительные реакции , и реакции, идущие без изменения степеней окисления химических элементов.

  • Окислительно-восстановительные реакции (ОВР) — это реакции, в ходе которых степени окисления веществ изменяются . При этом происходит обмен электронами .

В неорганической химии к таким реакциям относятся, как правило, реакции разложения, замещения, соединения, и все реакции, идущие с участием простых веществ. Для уравнивания ОВР используют метод электронного баланса (количество отданных электронов должно быть равно количеству полученных) или метод электронно-ионного баланса .

В органической химии разделяют реакции окисления и восстановления, в зависимости от того, что происходит с органической молекулой.

Реакции окисления в органической химии — это реакции, в ходе которых уменьшается число атомов водорода или увеличивается число атомов кислорода в исходной органической молекуле.

Например , окисление этанола под действием оксида меди:

CH 3 -CH 2 -OH + CuO → CH 3 -CH=O + H 2 O + Cu

Реакции восстановления в органической химии — это реакции, в ходе которых увеличивается число атомов водорода или уменьшается число атомов кислорода в органической молекуле.

Например , восстановление уксусного альдегида водородом :

CH 3 -CH=O + H 2 → CH 3 -CH 2 -OH

  • Протолитические реакции и реакции обмена — это такие реакции, в ходе которые степени окисления атомов не изменяются.

Например , нейтрализация едкого натра азотной кислотой :

NaOH + HNO 3 = H 2 O + NaNO 3

Классификация реакций по тепловому эффекту

По тепловому эффекту реакции разделяют на экзотермические и эндотермические .

Экзотермические реакции — это реакции, сопровождающиеся выделением энергии в форме теплоты (+Q ). К таким реакциям относятся почти все реакции соединения.

Исключения — реакция азота с кислородом с образованием оксида азота (II) — эндотермическая:

N 2 + O 2 = 2NO – Q

Реакция газообразного водорода с твердым йодом также эндотермическая :

H 2 + I 2 = 2HI – Q

Экзотермические реакции, в ходе которых выделяется свет, называют реакциями горения .

Например , горение метана:

CH 4 + O 2 = CO 2 + H 2 O

Также экзотермическими являются:


Эндотермические реакции — это реакции, сопровождающиеся поглощением энергии в форме теплоты (— Q ). Как правило, с поглощением теплоты идет большинство реакций разложения (реакции, требующие длительного нагревания).

Например , разложение известняка :

CaCO 3 → CaO + CO 2 – Q

Также эндотермическими являются:

  • реакции гидролиза ;
  • реакции, идущие только при нагревании ;
  • реакции, протекающие только при очень высоких температурах или под действием электрического разряда.

Например , превращение кислорода в озон:

3O 2 = 2O 3 — Q

В органической химии с поглощением теплоты идут реакции разложения. Например , крекинг пентана :

C 5 H 12 → C 3 H 6 + C 2 H 6 – Q .

Классификация химических реакций по агрегатному состоянию реагирующих веществ (по фазовому составу)

Вещества могут существовать в трех основных агрегатных состояниях — твердом , жидком и газообразном . По фазовому состоянию разделяют реакции гомогенные и гетерогенные .

  • Гомогенные реакции — это такие реакции, в которых реагирующие вещества и продукты находятся в одной фазе , и столкновение реагирующих частиц происходит во всем объеме реакционной смеси. К гомогенным реакциям относят взаимодействия жидкость-жидкость и газ-газ .

Например , окисление сернистого газа :

2SO 2(г) + O 2(г) = 2SO 3(г)

  • Гетерогенные реакции — это реакции, в которых реагирующие вещества и продукты находятся в разных фазах . При этом столкновение реагирующих частиц происходит только на границе соприкосновения фаз . К таким реакциям относятся взаимодействия газ-жидкость, газ-твердая фаза, твердая-твердая, и твердая фаза — жидкость .

Например , взаимодействие углекислого газа и гидроксида кальция :

CO 2(г) + Ca(OH) 2(р-р) = CaCO 3(тв) + H 2 O

Для классификации реакций по фазовому состоянию полезно уметь определять фазовые состояния веществ . Это достаточно легко сделать, используя знания о строении вещества, в частности, о .

Вещества с ионной , атомной или металлической кристаллической решеткой , как правило твердые при обычных условиях; вещества с молекулярной решеткой , как правило, жидкости или газы при обычных условиях.

Обратите внимание, что при нагревании или охлаждении вещества могут переходить из одного фазового состояния в другое. В таком случае необходимо ориентироваться на условия проведения конкретной реакции и физические свойства вещества.

Например , получение синтез-газа происходит при очень высоких температурах, при которых вода — пар:

CH 4(г) + H2O (г) = CO (г) + 3H 2(г)

Таким образом, паровая конверсия метана гомогенная реакция .

Классификация химических реакций по участию катализатора

Катализатор — это такое вещество, которое ускоряет реакцию, но не входит в состав продуктов реакции. Катализатор участвует в реакции, но практичсеки не расходуется в ходе реакции. Условно схему действия катализатора К при взаимодействии веществ A + B можно изобразить так: A + K = AK; AK + B = AB + K.

В зависимости от наличия катализатора различают каталитические и некаталитические реакции.

  • Каталитические реакции — это реакции, которые идут с участием катализаторов. Например, разложение бертолетовой соли: 2KClO 3 → 2KCl + 3O 2 .
  • Некаталитические реакции — это реакции, которые идут без участия катализатора. Например, горение этана: 2C 2 H 6 + 5O 2 = 2CO 2 + 6H 2 O.

Все реакции, протекающие с участием в клетках живых организмов, протекают с участием особых белковых катализаторов — ферментов. Такие реакции называют ферментативными.

Более подробно механизм действия и функции катализаторов рассматриваются в отдельной статье.

Классификация реакций по направлению

Обратимые реакции — это реакции, которые могут протекать и в прямом, и в и обратном направлении, т.е. когда при данных условиях продукты реакции могут взаимодействовать друг с другом. К обратимым реакциям относятся большинство гомогенных реакций, этерификация; реакции гидролиза; гидрирование-дегидрирование, гидратация-дегидратация; получение аммиака из простых веществ, окисление сернистого газа, получение галогеноводородов (кроме фтороводорода) и сероводорода; синтез метанола; получение и разложение карбонатов и гидрокарбонатов, и т.д.

Необратимые реакции — это реакции, которые протекают преимущественно в одном направлении, т.е. продукты реакции не могут взаимодействовать друг сдругом при данных условиях. Примеры необратимых реакций: горение; реакции, идущие со взрывом; реакции, идущие с образованием газа, осадка или воды в растворах; растворение щелочных металлов в воде; и др.

Справочник содержит 1100 неорганических веществ, для которых приведены уравнения важнейших реакций. Выбор веществ обосновывался их теоретической и лабораторно-промышленной важностью.

Справочник организован по алфавитному принципу химических формул и четко разработанной структуре, снабжен предметным указателем, позволяющим легко найти нужное вещество. Не имеет аналогов в отечественной и зарубежной химической литературе.

Для студентов химических и химико-технологических ВУЗов. Может быть использован преподавателями ВУЗов, аспирантами, научными и инженерно-техническими работниками химической промышленности, а также учителями и учащимися старших классов средней школы.

Al - алюминий.

Белый, легкий, пластичный металл. Пассивируется в воде, концентрированной азотной кислоте и растворе дихромата калия из-за образования устойчивой оксидной пленки; амальгамированный металл реагирует с водой. Реакционноспособный, сильный восстановитель. Проявляет амфотерные свойства; реагирует с разбавленными кислотами и щелочами.

AIN - нитрид алюминия.

Белый, очень твердый, огнеупорный, термически устойчивый. Не реагирует с жидкой водой, полностью гидролизуется водяным паром. Нерастворим в этаноле. Реагирует с кислотами и щелочами, но кислотостоек в компактной форме.

ZnS - сульфид цинка(II).

Белый, аморфный (осажденный из раствора) или кристаллический - кубическая а-модификация и гексагональная B-модификация. Чувствителен к УФ-облучению. В аморфном виде более реакционноспособный. Пептизируется (переходит в коллоидный раствор) при длительной обработке сероводородной водой. Не растворяется в воде, не реагирует со щелочами, гидратом аммиака. Реагирует с сильными кислотами, во влажном состоянии медленно окисляется 02 воздуха.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Реакции неорганических веществ, справочник, Молочко В.А., Андреева Л.Л., Лидин Р.А., 2007 - fileskachat.com, быстрое и бесплатное скачивание.

  • Константы неорганических веществ, Справочник, Лидин Р.А., Андреева Л.Л., Молочко В.А., 2008
  • Химия, Для школьников старших классов и поступающих в ВУЗы, Теоретические основы, Вопросы, Задачи, Тесты, Учебное пособие, Лидин Р.А., Молочко В.А., Андреева Л.Л., 2001

Занятие 2

Классификация химических реакций в неорганической химии

Химические реакции классифицируют по различным признакам.

    По числу исходных веществ и продуктов реакции

    Разложение – реакция, в которой из одного сложного вещества образуются два и более простых или сложных веществ

2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2

    Соединение – реакция, в результате которой из двух и более простых или сложных веществ, образуется одно более сложное

NH 3 + HCl → NH 4 Cl

    Замещение – реакция, протекающая между простыми и сложными веществами, при которой атомы простого вещества замещаются на атомы одного из элементов в сложном веществе.

Fe + CuCl 2 → Cu + FeCl 2

    Обмен – реакция, при которой два сложных вещества обмениваются своими составными частями

Al 2 O 3 + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2 O

Одна из реакций обмена реакция нейтрализации – это реакция между кислотой и основанием, в результате которой получается соль и вода.

NaOH + HCl → NaCl + H 2 O

    По тепловому эффекту

    Реакции, протекающие с выделением тепла, называются экзотермическими реакциями.

С + О 2 → СО 2 + Q

2) Реакции, протекающие с поглощением тепла, называются эндотермическими реакциями.

N 2 + O 2 → 2NO – Q

    По признаку обратимости

    Обратимые – реакции, проходящие при одних и тех условиях в двух взаимопротивоположных направлениях.

    Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми, при этом должен выделяться газ, осадок, или малодиссоциирующее вещество- вода.

BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl

Na 2 CO 3 +2HCl → 2NaCl + CO 2 + H 2 O

    Окислительно-восстановительные реакции – реакции, протекающие с изменением степени окисления.

Са + 4HNO 3 → Ca(NO 3) 2 + 2NO 2 + 2H 2 O

И реакции, протекающие без изменения степени окисления.

HNO 3 + KOH → KNO 3 + H 2 O

5.Гомомгенные реакции, если исходные вещества и продукты реакции находятся в одном агрегатном состоянии. И гетерогенные реакции, если продукты реакции и исходные вещества находятся в разных агрегатных состояниях.

Например: синтез аммиака.

Окислительно-восстановительные реакции.

Различают два процесса:

Окисление – это отдача электронов, в результате степень окисления увеличивается. Атом молекула или ион, отдающий электрон называется восстановителем .

Mg 0 - 2e → Mg +2

Восстановление – процесс присоединения электронов, в результате степень окисления уменьшается. Атом молекула или ион, присоединяющий электрон называется окислителем .

S 0 +2e → S -2

O 2 0 +4e → 2O -2

В окислительно–восстановительных реакциях должно соблюдаться правило электронного баланса (число присоединенных электронов должно быть равно числу отданных, свободных электронов быть не должно). А так же должен соблюдаться атомный баланс (число одноименных атомов в левой части должно быть равно числу атомов в правой части)

Правило написание окислительно-восстановительных реакций.

    Написать уравнение реакции

    Поставить степени окисления

    Найти элементы, у которых изменяется степень окисления

    Выписать попарно их.

    Найти окислитель и восстановитель

    Написать процесс окисление или восстановления

    Уравнять электроны, пользуясь правилом электронного баланса (найти н.о.к.), расставив коэффициенты

    Написать суммарное уравнение

    Поставить коэффициенты в уравнение химической реакции

KClO 3 → KClO 4 + KCl; N 2 + H 2 → NH 3 ; H 2 S + O 2 → SO 2 + H 2 O; Al + O 2 = Al 2 O 3 ;

Сu + HNO 3 → Cu(NO 3) 2 + NO + H 2 O; KClO 3 → KCl + O 2 ; P + N 2 O = N 2 + P 2 O 5 ;

NO 2 + H 2 O = HNO 3 + NO

. Скорость химических реакций. Зависимость скорости химических реакций от концентрации, температуры и природы реагирующих веществ.

Химические реакции протекают с разными скоростями. Изучением скорости химической реакции, а также выявлением её зависимости от условий проведения процесса занимается наука - химическая кинетика.

υ гомогенной реакции определяется изменением количества вещества в единице объёма:

υ =Δ n / Δt ∙V

где Δ n – изменение числа молей одного из веществ (чаще всего исходного, но может быть и продукта реакции), (моль);

V – объем газа или раствора (л)

Поскольку Δ n / V = ΔC (изменение концентрации), то

υ =Δ С / Δt (моль/л∙ с)

υ гетерогенной реакции определяется изменением количества вещества в единицу времени на единице поверхности соприкосновения веществ.

υ =Δ n / Δt ∙ S

где Δ n – изменение количества вещества (реагента или продукта), (моль);

Δt – интервал времени (с, мин);

S – площадь поверхности соприкосновения веществ (см 2 , м 2)

Почему скорость разных реакций не одинакова?

Для того чтобы началась химическая реакция, молекулы реагирующих веществ должны столкнуться. Но не каждое их столкновение приводит к химической реакции. Для того чтобы столкновение привело к химической реакции, молекулы должны иметь достаточно высокую энергию. Частицы, способные при столкновении, вступать в химическую реакцию, называются активными. Они обладают избыточной энергией по сравнению со средней энергией большинства частиц – энергией активации Е акт . Активных частиц в веществе намного меньше, чем со средней энергией, поэтому для начала многих реакций системе необходимо сообщить некоторую энергию (вспышка света, нагревание, механический удар).

Энергетический барьер (величина Е акт ) разных реакций различен, чем он ниже, тем легче и быстрее протекает реакция.

2. Факторы, влияющие на υ (количество соударений частиц и их эффективность).

1) Природа реагирующих веществ: их состав, строение => энергия активации

▪ чем меньше Е акт , тем больше υ;

2) Температура : при t на каждые 10 0 С, υ в 2-4 раза (правило Вант-Гоффа).

υ 2 = υ 1 ∙ γ Δt/10

Задача 1. Скорость некоторой реакции при 0 0 С равна 1 моль/л ∙ ч, температурный коэффициент реакции равен 3. Какой будет скорость данной реакции при 30 0 С?

υ 2 = υ 1 ∙ γ Δt/10

υ 2 =1∙3 30-0/10 = 3 3 =27 моль/л∙ч

3) Концентрация: чем больше, тем чаще происходят соударения и υ . При постоянной температуре для реакции mA + nB = C по закону действующих масс:

υ = k ∙ С A m C B n

где k – константа скорости;

С – концентрация (моль/л)

Закон действующих масс:

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

Задача 2. Реакция идет по уравнению А +2В → С. Во сколько раз и как изменится скорость реакции, при увеличении концентрации вещества В в 3 раза?

Решение:υ = k ∙ С A m ∙ C B n

υ = k ∙ С A ∙ C B 2

υ 1 = k ∙ а ∙ в 2

υ 2 = k ∙ а ∙ 3 в 2

υ 1 / υ 2 = а ∙ в 2 / а ∙ 9 в 2 = 1/9

Ответ: увеличится в 9 раз

Для газообразных веществ скорость реакции зависит от давления

Чем больше давление, тем выше скорость.

4) Катализаторы – вещества, которые изменяют механизм реакции, уменьшают Е акт => υ .

▪ Катализаторы остаются неизменными по окончании реакции

▪ Ферменты – биологические катализаторы, по природе белки.

▪ Ингибиторы – вещества, которые ↓ υ

1. При протекании реакции концентрация реагентов:

1) увеличивается

2) не изменяется

3) уменьшается

4) не знаю

2. При протекании реакции концентрация продуктов:

1) увеличивается

2) не изменяется

3) уменьшается

4) не знаю

3. Для гомогенной реакции А+В → … при одновременном увеличении молярной концентрации исходных веществ в 3 раза скорость реакции возрастает:

1) в 2 раза

2) в 3 раза

4) в 9 раз

4. Скорость реакции H 2 + J 2 →2HJ понизится в 16 раз при одновременном уменьшении молярных концентраций реагентов:

1) в 2 раза

2) в 4 раза

5. Скорость реакции CO 2 + H 2 → CO + H 2 O при увеличении молярных концентраций в 3 раза (CO 2) и в 2 раза (H 2) возрастает:

1) в 2 раза

2) в 3 раза

4) в 6 раз

6. Скорость реакции C (T) + O 2 → CO 2 при V-const и увеличении количеств реагентов в 4 раза возрастает:

1) в 4 раза

4) в 32 раза

10. Скорость реакции А+В → … увеличится при:

1) понижении концентрации А

2) повышении концентрации В

3) охлаждении

4) понижении давления

7. Скорость реакции Fe + H 2 SO 4 → FeSO 4 + H 2 выше при использовании:

1) порошка железа, а не стружек

2) железных стружек, а не порошка

3) концентрированной H 2 SO 4 , а не разбавленной H 2 SO 4

4) не знаю

8. Скорость реакции 2H 2 O 2 2H 2 O + O 2 будет выше, если использовать:

1) 3%-й раствор H 2 O 2 и катализатор

2) 30%-й раствор H 2 O 2 и катализатор

3) 3%-й раствор H 2 O 2 (без катализатора)

4) 30%-й раствор H 2 O 2 (без катализатора)

Химическое равновесие. Факторы, влияющие на смещение равновесие. Принцип Ле-Шателье.

Химические реакции по направлению их протекания можно разделить

Необратимые реакции протекают только в одном направлении (реакции ионного обмена с , ↓, мдс, горения и некоторые др.)

Например, AgNO 3 + HCl → AgCl↓ + HNO 3

Обратимые реакции при одних и тех же условиях протекают в противоположных направлениях (↔).

Например, N 2 + 3H 2 ↔ 2NH 3

Состояние обратимой реакции, при котором υ = υ называется химическим равновесием.

Чтобы реакция на химических производствах проходила как можно полнее, необходимо сместить равновесие в сторону продукта. Для того, чтобы определить, как тот или иной фактор изменит равновесие в системе, используют принцип Ле Шателье (1844 г.):

Принцип Ле Шателье: Если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие (изменить t, р, С), то равновесие сместится в ту сторону, которая ослабит это воздействие .

Равновесие смещается:

1) при С реаг →,

при С прод ← ;

2) при p (для газов) - в сторону уменьшения объема,

при ↓ р – в сторону увеличения V;

если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на равновесие в данной системе.

3) при t – в сторону эндотермической реакции (- Q),

при ↓ t – в сторону экзотермической реакции (+ Q).

Задача 3. Как надо изменить концентрации веществ, давление и температуру гомогенной системы PCl 5 ↔ PCl 3 + Cl 2 – Q , чтобы сместить равновесие в сторону разложения PCl 5 (→)

↓ С (PCl 3) и С (Cl 2)

Задача 4. Как сместиться химическое равновесие реакции 2СО + О 2 ↔ 2СО 2 + Q при

а) повышении температуры;

б) повышении давлении

1. Способ, смещающий равновесие реакции 2CuO(T) + CO Cu 2 O(T) + CO 2 вправо (→), - это:

1) увеличение концентрации угарного газа

2) увеличение концентрации углекислого газа

3) уменьшение концентрации оксида мели (I)

4) уменьшение концентрации оксида меди (II)

2. В гомогенной реакции 4HCl + O 2 2Cl 2 + 2H 2 O при повышении давления равновесие сместится:

2) вправо

3) не сместится

4) не знаю

8. При нагревании равновесие реакции N 2 + O 2 2NO – Q:

1) сместится вправо

2) сместится влево

3) не сместится

4) не знаю

9. При охлаждении равновесие реакции H 2 + S H 2 S + Q:

1) сместится влево

2) сместится вправо

3) не сместится

4) не знаю

  1. Классификация химических реакций в неорганической и органической химии

    Документ

    Задания А 19 (ЕГЭ 2012 г) Классификация химических реакций в неорганической и органической химии . К реакциям замещения относится взаимодействие: 1) пропена и воды, 2) ...

  2. Тематическое планирование уроков химии в 8-11 классах 6

    Тематическое планирование

    1 Химические реакции 11 11 Классификация химических реакций в неорганической химии . (С) 1 Классификация химических реакций в органической химии . (С) 1 Скорость химических реакций . Энергия активации. 1 Факторы, влияющие на скорость химических реакций ...

  3. Вопросы к экзаменам по химии для студентов 1 го курса ну(К)орк фо

    Документ

    Метана, применение метана. Классификация химических реакций в неорганической химии . Физические и химические свойства и применение этилена. Химическое равновесие и условия его...

  4. Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении.

    В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединений.

    Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется.

    Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, излучение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

    Атомно - молекулярное учение.

    1. Все вещества состоят из молекул.

    Молекула - наименьшая частица вещества, обладающая его химическими свойствами.

    2. Молекулы состоят из атомов.

    Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства. Различным элементам соответствуют различные атомы.

    3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания.

    Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 118 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.

    Атомное ядро - центральная часть атома, состоящая из Zпротонов и Nнейтронов, в которой сосредоточена основная масса атомов.

    Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе.

    Сумма протонов и нейтронов атомного ядра называется массовым числом A= Z+ N .

    Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

    Массовое
    число ®
    Заряд ®
    ядра

    A
    Z

    63
    29

    Cu и

    65
    29

    35
    17

    Cl и

    37
    17

    Химическая формула - это условная запись состава вещества с помощью химических знаков (предложены в 1814 г. Й. Берцелиусом) и индексов (индекс - цифра, стоящая справа внизу от символа. Обозначает число атомов в молекуле). Химическая формула показывает, атомы каких элементов и в каком отношении соединены между собой в молекуле.

    Аллотропия - явление образования химическим элементом нескольких простых веществ, различающихся по строению и свойствам. Простые вещества - молекулы, состоят из атомов одного и того же элемента.

    C ложные вещества - молекулы, состоят из атомов различных химических элементов.

    Постоянная атомной массы равна 1 / 12 массы изотопа 12 C - основного изотопа природного углерода.

    m u = 1 / 12 m (12 C ) =1 а.е.м = 1,66057 10 -24 г

    Относительная атомная масса (A r ) - безразмерная величина, равная отношению средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1 / 12 массы атома 12 C .

    Средняя абсолютная масса атома (m ) равна относительной атомной массе, умноженной на а.е.м.

    A r (Mg ) = 24,312

    m (Mg ) = 24,312 1,66057 10 -24 = 4,037 10 -23 г

    Относительная молекулярная масса (M r ) - безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1 / 12 массы атома углерода 12 C .

    M г = m г / (1 / 12 m а (12 C ))

    m r - масса молекулы данного вещества;

    m а (12 C ) - масса атома углерода 12 C .

    M г = S A г (э). Относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов с учетом индексов.

    Примеры.

    M г (B 2 O 3 ) = 2 A r (B ) + 3 A r (O ) = 2 11 + 3 16 = 70

    M г (KAl(SO 4) 2) = 1 A r (K) + 1 A r (Al) + 1 2 A r (S) + 2 4 A r (O) =
    = 1 39 + 1 27 + 1 2 32 + 2 4 16 = 258

    Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения - моль.

    Количество вещества, моль . Означает определенное число структурных элементов (молекул, атомов, ионов). Обозначается n , измеряется в моль. Моль - количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода.

    Число Авогадро (N A ). Количество частиц в 1 моль любого вещества одно и то же и равно 6,02 10 23 . (Постоянная Авогадро имеет размерность - моль -1).

    Пример.

    Сколько молекул содержится в 6,4 г серы?

    Молекулярная масса серы равна 32 г /моль. Определяем количество г/моль вещества в 6,4 г серы:

    n (s ) = m (s ) / M (s ) = 6,4г / 32 г/моль = 0,2 моль

    Определим число структурных единиц (молекул), используя постоянную Авогадро N A

    N(s) = n (s) N A = 0,2 6,02 10 23 = 1,2 10 23

    Молярная масса показывает массу 1 моля вещества (обозначается M ).

    M = m / n

    Молярная масса вещества равна отношению массы вещества к соответствующему количеству вещества.

    Молярная масса вещества численно равна его относительной молекулярной массе, однако первая величина имеет размерность г/моль, а вторая - безразмерная.

    M = N A m (1 молекула) = N A M г 1 а.е.м. = (N A 1 а.е.м.) M г = M г

    Это означает, что если масса некоторой молекулы равна, например, 80 а.е.м. (SO 3 ), то масса одного моля молекул равна 80 г. Постоянная Авогадро является коэффициентом пропорциональности, обеспечивающим переход от молекулярных соотношений к молярным. Все утверждения относительно молекул остаются справедливыми для молей (при замене, в случае необходимости, а.е.м. на г) Например, уравнение реакции: 2 Na + Cl 2 2 NaCl , означает, что два атома натрия реагируют с одной молекулой хлора или, что одно и то же, два моль натрия реагируют с одним молем хлора.

ddvor.ru - Одиночество и расставания. Популярные вопросы. Эмоции. Чувства. Личные отношения