Чем выше соленость тем вода замерзает. При какой температуре замерзает морская вода? Фото и видео с экспериментами

В разделе на вопрос какую можно достичь наи-низчайшую температуру водно-солевого раствора обычной (поваренной, NaCl) соли заданный автором Европейский лучший ответ это Благодаря добавлению соли в воду скорость таяния льда увеличивается, а температура таяния льда опускается ниже. Это объясняется тем, что добавление соли вызывает ослабление молекулярного сцепления и разрушение кристаллических решеток льда. Таяние льдосоляной смеси протекает с отбором теплоты от окружающей среды, в результате чего окружающий воздух охлаждается и температура его понижается. С повышением содержания соли в льдосоляной смеси температура плавления ее понижается. Раствор соли с самой низкой температурой таяния называется эвтектическим, а температура его таяния - криогидратной точкой. Криогидратная точка для льдосоляной смеси с поваренной солью -21,2°С, при концентрации соли в растворе 23,1% по отношению к общей массе смеси, что примерно равно 30 кг соли на 100 кг льда. При дальнейшем повышении концентрации соли происходит не понижение температуры таяния льдосоляной смеси, а повышение температуры таяния (при 25%-ной концентрации соли в растворе к общей массе температура таяния повышается до -8°С).
При замораживании водного раствора поваренной соли в концентрации, соответствующей криогидратной точке, получается однородная смесь кристаллов льда и соли, которая называется эвтектическим твердым раствором.
Температура плавления эвтектического твердого раствора поваренной соли -21,2°С, а теплота плавления - 236 кДж/кг. Эвтектический раствор применяют для зероторного охлаждения. Для этого в зероты - наглухо запаянные формы - заливают эвтектический раствор поваренной соли и замораживают их. Замороженные зероты используют для охлаждения прилавков, шкафов, охлаждаемых переносных сумок-холодильников и т. д. (откройте морозилку бытового холодильника - найдете такой контейнер).В торговле льдосоляное охлаждение широко применялось до массового выпуска оборудования с машинным способом охлаждения.

Ответ от Просохнуть [гуру]
самая низкая температура из любой температуры - абсольтный ноль, около - 273 градуса цельсия


Ответ от Оля [эксперт]
температура зависит от концентрации соли в растворе, чем больше концентрация, тем ниже температура замерзания.Точных цифр не скажу, т.к. справочник у меня на время отобрали)) но если исходить из того, что морская вода-это солевой раствор, то можно сделать вывод, что температура замерзания гараздо ниже нуля....градусов -15-20


Ответ от способный [гуру]
22,4 %-ный водный раствор NaClзамерзает при 21,2 °С
Ответ
ссылка
на вопрос
Водный раствор NaCl "температура кристаллизации"


Ответ от Ёергей Незнамов [новичек]
Таблица 10.8. Температура замерзания раствора NaCl
Содержание NaCl, г в 100 г воды Температура замерзания, ?С
1,5 - -0,9
3,0 - - 1,8
4,5 - -2,6
5,9 - -3,5
7,5 - -4,4
9,0 - -5,4
10,6 - -6,4
12,3 - -7,5
14,0 - -8,6
15,7 - -9,8
17,5 - -11,0
19,3 - - 12,2
21,2 - -13,6
23,1 - - 15,1
25,0 - - 16,0
26,9 - -18,2
29,0 - -20,0
30,1 - -21,2

При какой температуре замерзает вода? Казалось бы – простейший вопрос, ответить на который может даже ребёнок: температура замерзания воды при обычном атмосферном давлении в 760 мм ртутного столба составляет ноль градусов по Цельсию.

Однако вода (несмотря на чрезвычайно широкую распространённость её на нашей планете) является самой загадочной и не до конца изученной субстанцией, поэтому ответ на этот вопрос требует обстоятельного и аргументированного разговора.

  • В России и в Европе температуру измеряют по шкале Цельсия, самое высокое значение которой имеет отметку в 100 градусов.
  • Американский учёный Фаренгейт разработал свою шкалу, насчитывающую 180 делений.
  • Существует ещё одна единица измерения температуры – кельвин, названная в честь английского физика Томсона, получившего звание лорда Кельвина.

Состояния и виды воды

Вода на планете Земля может принимать три основных агрегатных состояния: жидкое, твёрдое и газообразное, которые способны трансформироваться в разные формы, одновременно сосуществующие друг с другом (айсберги в морской воде, водяной пар и кристаллы льда в облаках на небе, ледники и свободно текущие реки).

В зависимости от особенностей происхождения, назначения и состава вода может быть:

  • пресной;
  • минеральной;
  • морской;
  • питьевой (сюда же отнесём водопроводную воду);
  • дождевой;
  • талой;
  • солоноватой;
  • структурированной;
  • дистиллированной;
  • деионизированной.

Наличие изотопов водорода делает воду:

  1. лёгкой;
  2. тяжёлой (дейтериевой);
  3. сверхтяжёлой (тритиевой).

Все мы знаем о том, что вода бывает мягкой и жёсткой: этот показатель определяется содержанием катионов магния и кальция.

Каждый из перечисленных нами видов и агрегатных состояний воды имеет свою температуру замерзания и плавления.

Температура замерзания воды

Почему вода замерзает? Обычная вода всегда содержит некоторое количество взвешенных частиц минерального или органического происхождения. Это могут быть мельчайшие частицы глины, песка или домашней пыли.

Когда температура окружающей среды опускается до определённых значений, эти частицы берут на себя роль центров, вокруг которых начинают образовываться кристаллы льда.

Ядрами кристаллизации могут стать также воздушные пузырьки, а также трещины и повреждения на стенках сосуда, в котором находится вода. Скорость процесса кристаллизации воды во многом определяется количеством этих центров: чем их больше, тем быстрее замерзает жидкость.

В обычных условиях (при нормальном атмосферном давлении) температурой фазового перехода воды из жидкого состояния в твёрдое является отметка 0 градусов по Цельсию. Именно при такой температуре происходит замерзание воды на улице.

Отчего горячая вода замерзает быстрее холодной?

Горячая вода замерзает быстрее холодной – на этот феномен обратил внимание Эрасто Мпемба – школьник с Танганьики. Его эксперименты с массой для приготовления мороженого показали, что скорость замерзания подогретой массы значительно выше, чем холодной.

Одной из причин этого интересного явления, получившего название «парадокс Мпембы», является более высокая теплоотдача горячей жидкости, а также наличие в ней большего количества ядер кристаллизации по сравнению с холодной водой.

Взаимосвязаны ли температура замерзания воды и высота?

При изменении давления, часто связанного с нахождением на разной высоте, температура замерзания воды начинает радикально отличаться от стандартной, характерной для обычных условий.
Кристаллизация воды на высоте происходит при следующих температурных значениях:

  • как ни парадоксально, на высоте 1000 м вода замерзает при 2 градусах тепла по шкале Цельсия;
  • на высоте 2000 метров это происходит уже при 4 градусах тепла.

Самая высокая температура замерзания воды в горах наблюдается на высоте свыше 5000 тысяч метров (например, в Фанских горах или на Памире).

Как давление влияет на процесс кристаллизации воды?

Давайте попробуем увязать динамику изменения температуры замерзания воды с переменой давления.

  • При давлении 2 атм вода замерзнет при температуре -2 градуса.
  • При давлении 3 атм началом замерзания воды станет температура -4 градуса по Цельсию.

При повышенном давлении температура начала процесса кристаллизации воды понижается, а температура кипения увеличивается. При низком давлении получается диаметрально противоположная картина.

Именно поэтому в условиях высокогорья и разреженной атмосферы весьма трудно сварить даже яйца, поскольку вода в котелке закипает уже при 80 градусах. Понятно, что при такой температуре приготовить пищу попросту невозможно.

При высоком давлении процесс плавления льда под лезвиями коньков происходит даже при очень низких температурах, но именно благодаря ему коньки скользят по ледяной поверхности.

Аналогичным образом объясняется примерзание полозьев сильно нагруженных нарт в рассказах Джека Лондона. Тяжёлые нарты, оказывающие давление на снег, вызывают его плавление. Образующаяся при этом вода облегчает их скольжение. Но стоит нартам остановиться и задержаться продолжительное время на одном месте, как вытесненная вода, замерзнув, приморозит полозья к дороге.

Температура кристаллизации водных растворов

Будучи отличным растворителем, вода легко вступает в реакции с различными органическими и неорганическими веществами, образуя массу подчас неожиданных химических соединений. Разумеется, каждое из них будет замерзать при разных температурах. Отразим это в наглядном списке.

  • Температура замерзания смеси спирта и воды зависит от процентного соотношения в ней обоих компонентов. Чем больше воды добавлено в раствор, тем ближе к нулю температура его замерзания. Если же в растворе больше спирта, процесс кристаллизации начнётся при значениях, близких к -114 градусам.

    Важно знать, что фиксированной температуры замерзания водно-спиртовые растворы не имеют. Обычно говорят о температуре начала процесса кристаллизации и температуре окончательного перехода в твёрдое состояние.

    Между началом образования первых кристаллов и полным застыванием спиртового раствора лежит температурный интервал величиной в 7 градусов. Так, температура замерзания воды со спиртом 40% концентрации на начальном этапе составляет -22,5 градуса, а окончательный переход раствора в твёрдую фазу произойдёт при -29,5 градусах.

Температура замерзания воды с солью находится в тесной связи со степенью её солёности: чем больше соли в растворе, тем при более низком положении ртутного столбика он замёрзнет.

Для измерения солёности воды используют особую единицу – «промилле». Итак, мы установили, что температура замерзания воды с увеличением концентрации солей понижается. Поясним это на примере:

Уровень солёности океанской воды равна 35 промилле, при этом средняя величина её замерзания составляет 1,9 градуса. Степень солёности черноморских вод насчитывает 18-20 промилле, поэтому замерзают они при более высокой температуре с диапазоном от -0,9 до -1,1 градуса Цельсия.

  • Температура замерзания воды с сахаром (для раствора, моляльность которого составляет 0,8) равна -1,6 градуса.
  • Температура замерзания воды с примесями во многом зависит от их количества и характера примесей, входящих в состав водного раствора.
  • Температура замерзания воды с глицерином зависит от концентрации раствора. Раствор, содержащий 80 мл глицерина, замёрзнет при -20 градусах, при снижении содержания глицерина до 60 мл процесс кристаллизации начнётся при -34 градусах, а начало замерзания 20% раствора – минус пять градусов. Как можно заметить, линейная зависимость в данном случае отсутствует. Для замерзания 10% раствора глицерина будет достаточно температуры -2 градуса.
  • Температура замерзания воды с содой (подразумевается едкая щёлочь или каустическая сода) представляет ещё более загадочную картину: 44% раствор каустика замерзает при +7 градусах Цельсия, а 80% - при+ 130.

Замерзание пресных водоёмов

Процесс образования льда на пресноводных водоемах происходит в несколько ином температурном режиме.

  • Температура замерзания воды в озере, точно так же, как и температура замерзания воды в реке, равна нулю градусов по шкале Цельсия. Замерзание самых чистых речек и ручьев начинается не с поверхности, а со дна, на котором присутствуют ядра кристаллизации в виде частиц донного ила. Коркой льда поначалу покрываются коряги и водные растения. Стоит лишь донному льду подняться на поверхность, как река мгновенно промерзает насквозь.
  • Замерзшая вода на Байкале иногда может охлаждаться до отрицательных температур. Происходит это лишь на мелководье; температура воды при этом может составлять тысячные, а иногда и сотые доли одного градуса ниже нуля.
  • Температура байкальской воды под самой коркой ледяного покрова, как правило, не превышает +0,2 градуса. В низших пластах она постепенно повышается до +3,2 на дне самой глубокой котловины.

Температура замерзания дистиллированной воды

Замерзает ли дистиллированная вода? Напомним о том, что для замерзания воды необходимо присутствие в ней неких центров кристаллизации, коими могут стать пузырьки воздуха, взвешенные частицы, а также повреждения стенок ёмкости, в которой она находится.

Дистиллированная вода, совершенно лишённая всяких примесей, не имеет и ядер кристаллизации, а поэтому её замерзание начинается при очень низких температурах. Начальная точка замерзания дистиллированной воды составляет -42 градуса. Учёным удалось добиться переохлаждения дистиллированной воды до -70 градусов.

Вода, подвергнутая воздействию очень низких температур, но при этом не кристаллизовавшаяся, называется «переохлаждённой». Можно, поместив бутылку с дистиллированной водой в морозильную камеру, добиться её переохлаждения, а затем продемонстрировать очень эффектный трюк - смотрите в видео:

Тихонько постучав по бутылке, извлечённой из холодильника, или бросив в неё небольшой кусочек льда, можно показать, как мгновенно она превращается в лед, имеющий вид удлинённых кристаллов.

Дистиллированная вода: замерзает или нет под давлением эта очищенная субстанция? Такой процесс возможен лишь в специально созданных лабораторных условиях.

Температура замерзания соленой воды


Температурный режим определяет в первую очередь скорость протекания процесса вымораживания.

Температура в области положительных и отрицательных значений влияет на скорость реакций, растворимость соединений, скорость растворения, коагуляции, а также на концентрацию недиссоциированных ионных пар. Различают несколько разновидностей температуры в растворах: структурная, температура замерзания. Температура начала кристаллизации (температура замерзания) - температура, при которой в результате охлаждения раствора начинается образование кристаллов. Понижение температуры замерзания ΔТз - разность между температурой замерзания чистого растворителя и раствора. Температура замерзания рассола всегда ниже температуры замерзания чистой воды и зависит от концентрации растворенных солей. Эта зависимость для рассолов может быть выражена уравнением:

где К - коэффициент пропорциональности; С - концентрация растворённого вещества в растворе.

В менее разбавленных растворах температура начала кристаллизации определяется по диаграмме состояния соответствующей системы. Поскольку температура замерзания морских вод и высокоминерализованных природных рассолов будет различной, то мы предполагаем, что расчёт этой температуры следует вести по разным формулам.

Нами была произведена аппроксимация экспериментальных данных по температурам замерзания растворов поваренной соли, морской воды и используемых в работе природных рассолов. Зависимости изменения температур замерзания в графической и аналитической формах представлены на рисунках 41-43.

Рис. 41. Зависимость температуры замерзания от минерализации раствора поваренной соли

Рис. 42. Зависимость температуры замерзания морской воды от минерализации

Рис. 43. Зависимость температуры замерзания рассола от минерализации

Из представленных значений температур замерзания (табл. 9) видно, что температура замерзания понижается по мере увеличения общей минерализации раствора и по мере увеличения числа компонентов, входящих в замораживаемую систему - ΔТз(NaCl) < ΔТз(морск.вода) < ΔТз(рассол).

Таблица 9. Анализ построенных графических зависимостей

Собщ, г/дм 3

Температура замерзания, °С

раствор NaCl

морская вода

t=8∙10 -5 M 2 -0.0945M+1.0595,

0.0557M+0.0378,

t=-2∙10 -4 M 2 -0.0384M-0.7035,

* R 2 - достоверность аппроксимации

Известно, что вымораживание индивидуальных солей из опресняемой воды происходит при различных температурах, - так, при температуре -2°С выпадает углекислый кальций. При - 3,5°С сернокислый натрий. При понижении температуры до -20°С выпадает поваренная соль, до - 25,5-26°С хлориды магния и при очень низких температурах - 40-55°С выпадают хлориды калия и кальция . Для отрицательных температур специфичен процесс образования кристаллогидратов, неустойчивых при температурах ниже 0°С. Например, гидрогалит NaCl*2H 2 O образуется при -0,15°С, MgCl 2 *12H 2 O стабилен при -15°С, а MgCl 2 *8H 2 O - ниже 0°С, Na 2 CO 3 *7H 2 O формируется только при -10°С. KCl кристаллизуется при 0°С в виде KCl, при -6,6°С сосуществуют уже две фазы - KCl и KCl*H 2 O, при -10,6°С осаждается лишь KCl*H 2 O. При отрицательной температуре формируются индивидуальные кристаллогидраты с максимально возможным количеством молекул кристаллизационной воды соответственно координационным числам при данном её значении и их смеси (но не смешанные кристаллы). Следует отметить аномальное понижение температур замерзания концентрированных растворов.

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Опыты со льдом для детей — это всегда интересно. Проводя опыты вместе с Владом, я даже сделала несколько открытий для себя.

Сегодня найдем ответы на следующие вопросы:

  • как ведет себя вода при замораживании?
  • что будет, если заморозить соленую воду?
  • шуба согреет лед?
  • и некоторые другие...

Замораживание воды

Вода при замерзании расширяется. На фотографии стаканчик с замороженной водой. Видно, что лед поднялся бугорком. Вода замерзает не равномерно. Вначале лед появляется у стенок стакана, постепенно заполняя весь сосуд. В воде молекулы движутся хаотично, поэтому она принимает форму сосуда, в который налита. Лед же имеет четкую кристаллическую структуру, при этом расстояния между молекулами льда больше, чем между молекулами воды, поэтому лед занимает больше места, чем вода, то есть расширяется.

Соленая вода замерзает?

Чем более соленая вода, тем ниже температура замерзания. Для эксперимента мы взяли два стаканчика — в одном пресная вода (помечен буквой В), в другом очень соленая вода (помечен буквами В+С).

Простояв в морозилке всю ночь, соленая вода так и не замерзла, но в стаканчике образовались кристаллы льда. Пресная вода превратилась в лед. Пока я манипулировала со стаканчиками и растворами соли , Владик сотворил свой незапланированный эксперимент.

Налил в кружку воду, растительное масло и незаметно поставил в морозилку. На следующий день я обнаружила кружку со льдом и плавающим помутневшим маслом. Делаем вывод, что разные жидкости имеют различную температуру замерзания.

Соленая вода в морозилке не замерзла, а что будет, если посыпать лед солью? Проверим.

Опыт со льдом и солью

Возьмем два кубика льда. Один из них посыплем солью, а второй оставим для сравнения. Соль разъедает лед, проделывая канавки и ходы в ледяном кубике. Как и ожидалось, кубик льда, посыпанный солью, растаял гораздо быстрее. Именно поэтому дворники зимой посыпают дорожки солью. Если посыпать солью лед, можно не только наблюдать за таянием, но и немного порисовать!

Мы заморозили большую ледышку и посыпали ее солью, взяли кисточки и акварельные краски и стали творить красоту Старший сын наносил на лед краску кистью, а младший руками.

Наше опытное творчество объединяет всю семью, вот и Макарушкина ручка попала в объектив фотоаппарата!

Макар и Влад очень любят все замораживать . Иногда в морозилке находятся совершенно неожиданные предметы.

Этот опыт я мечтала сделать еще с детства, но у мамы не было шубы, а мне нужна была именно шуба и никаких заменителей! Любимый купил мне шубу, и теперь представляю вашему вниманию этот чудо-опыт. В начале я не представляла, как можно решиться на то, что бы завернуть мороженое в шубу, даже если очень хочется поэкспериментировать. А если опыт не удастся, как ее потом отстирывать. Эх, была ни была!..

Мороженое положила в пакетики:) Завернула шубой и стала ждать. Ура, все замечательно! Шуба цела, и мороженое растаяло гораздо меньше, чем контрольный образец, стоявший рядом без шубы.

Как же здорово быть взрослой, иметь шубу и делать какие угодно детские опыты!

Дети любят красить и украшать. А цветной лед доставляет массу положительных эмоций и позволяет развивать творчество у малышей. Опыты не просто яркие, познавательные, но и полезные. Рецепты еще большего количества ярких экспериментов для детей дарю вам сейчас. Скачивайте полезный сборник опытов для вашей домашней лаборатории — “Опыты с водой ”. Пишите в комментариях ваши отзывы об опытах и пожелания: какие опыты вы бы хотели увидеть на страницах нашего сайта. Наука — это ведь весело.

Ваша Галина Кузьмина

В таблице представлены теплофизические свойства раствора хлористого кальция CaCl 2 в зависимости от температуры и концентрации соли: удельная теплоемкость раствора, теплопроводность, вязкость водных растворов, их температуропроводность и число Прандтля. Концентрация соли CaCl 2 в растворе от 9,4 до 29,9 %. Температура, при которой приведены свойства определяется содержанием соли в растворе и находится в диапазоне от -55 до 20°С.

Хлорида кальция CaCl 2 может не замерзать до температуры минус 55°С . Для достижения этого эффекта концентрация соли в растворе должна быть 29,9%, а его плотность составит величину 1286 кг/м 3 .

При увеличении концентрации соли в растворе увеличивается не только его плотность, но и такие теплофизические свойства, как динамическая и кинематическая вязкость водных растворов, а также число Прандтля. Например, динамическая вязкость раствора CaCl 2 с концентрацией соли 9,4 % при температуре 20°С равна 0,001236 Па·с, а при увеличении концентрации хлорида кальция в растворе до 30% его динамическая вязкость увеличивается до значения 0,003511 Па·с.

Следует отметить, что на вязкость водных растворов этой соли наиболее сильное влияние оказывает температура. При охлаждении раствора хлорида кальция с 20 до -55°С его динамическая вязкость может увеличиться в 18 раз, а кинематическая — в 25 раз.

Даны следующие теплофизические свойства раствора CaCl 2 :

  • , кг/м 3 ;
  • температура замерзания °С;
  • динамическая вязкость водных растворов, Па·с;
  • число Прандтля.

Плотность раствора хлористого кальция CaCl 2 в зависимости от температуры

В таблице указаны значения плотности раствора хлористого кальция CaCl 2 различной концентрации в зависимости от температуры.
Концентрация хлорида кальция CaCl 2 в растворе от 15 до 30 % при температуре от -30 до 15°С. Плотность водного раствора хлористого кальция увеличивается при снижении температуры раствора и увеличением в нем концентрации соли.

Теплопроводность раствора CaCl 2 в зависимости от температуры

В таблице представлены значения теплопроводности раствора хлористого кальция CaCl 2 различной концентрации при отрицательных температурах.
Концентрация соли CaCl 2 в растворе от 0,1 до 37,3 % при температуре от -20 до 0°С. По мере роста концентрации соли в растворе его теплопроводность снижается.

Теплоемкость раствора CaCl 2 при 0°С

В таблице представлены значения массовой теплоемкости раствора хлористого кальция CaCl 2 различной концентрации при 0°С. Концентрация соли CaCl 2 в растворе от 0,1 до 37,3 %. Следует отметить, что с повышением концентрации соли в растворе, его теплоемкость снижается.

Температура замерзания растворов солей NaCl и CaCl 2

В таблице приведена температура замерзания растворов солей хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации соли. Концентрация соли в растворе от 0,1 до 37,3 %. Температура замерзания солевого раствора определяется концентрацией соли в растворе и для хлорида натрия NaCl может достигать значения минус 21,2°С для эвтектического раствора.

Необходимо отметить, что раствор хлористого натрия может не замерзать до температуры минус 21,2°С , а раствор хлористого кальция не замерзает при температуре до минус 55°С .

Плотность раствора NaCl в зависимости от температуры

В таблице представлены значения плотности раствора хлористого натрия NaCl различной концентрации в зависимости от температуры.
Концентрация соли NaCl в растворе от 10 до 25 %. Значения плотности раствора указаны при температуре от -15 до 15°С.

Теплопроводность раствора NaCl в зависимости от температуры

В таблице даны значения теплопроводности раствора хлористого натрия NaCl различной концентрации при отрицательных температурах.
Концентрация соли NaCl в растворе от 0,1 до 26,3 % при температуре от -15 до 0°С. По данным таблицы видно, что теплопроводность водного раствора хлорида натрия снижается по мере роста концентрации соли в растворе.

Удельная теплоемкость раствора NaCl при 0°С

В таблице представлены значения массовой удельной теплоемкости водного раствора хлористого натрия NaCl различной концентрации при 0°С. Концентрация соли NaCl в растворе от 0,1 до 26,3 %. По данным таблицы видно, что с повышением концентрации соли в растворе, его теплоемкость снижается.

Теплофизические свойства раствора NaCl

В таблице представлены теплофизические свойства раствора хлористого натрия NaCl в зависимости от температуры и концентрации соли. Концентрация хлорида натрия NaCl в растворе от 7 до 23,1 %. Необходимо отметить, что при охлаждении водного раствора хлорида натрия его удельная теплоемкость меняется слабо, теплопроводность снижается, а значение вязкости раствора увеличивается.

Даны следующие теплофизические свойства раствора NaCl :

  • плотность раствора, кг/м 3 ;
  • температура замерзания °С;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град);
  • динамическая вязкость раствора, Па·с;
  • кинематическая вязкость раствора, м 2 /с;
  • коэффициент температуропроводности, м 2 /с;
  • число Прандтля.

Плотность растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации при 15°С

В таблице представлены значения плотности растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации. Концентрация соли NaCl в растворе от 0,1 до 26,3 % при температуре раствора 15°С. Концентрация хлорида кальция CaCl 2 в растворе находится в диапазоне от 0,1 до 37,3 % при его температуре 15°С. Плотность растворов хлорида натрия и кальция растет при увеличении содержания в нем соли.

Коэффициент объемного расширения растворов хлористого натрия NaCl и кальция CaCl 2

В таблице даны значения среднего коэффициента объемного расширения водных растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации и температуры.
Коэффициент объемного расширения раствора соли NaCl указан при температуре от -20 до 20°С.
Коэффициент объемного расширения раствора хлорида CaCl 2 представлен при температуре от -30 до 20°С.

Источники:

  1. Данилова Г. Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. М.: Пищевая промышленность, 1976.- 240 с.
ddvor.ru - Одиночество и расставания. Популярные вопросы. Эмоции. Чувства. Личные отношения