Экологический словарь что такое трофический уровень, что означает и как правильно пишется. Пищевые цепи и трофические уровни

РАЗНОКАЧЕСТВЕННОСТЬ ФОРМ ЖИЗНИ И БИОГЕННЫЙ КРУГОВОРОТ

Устойчивое существование жизни возможно лишь при многообразии, разно качественности ее форм, специфика обмена, которых обеспечивает последовательное использование выделяемых в среду продуктов метаболизма, формирующие биогенный круговорот.

В простейшем виде такой комплиментарный набор качеств форм жизни представлен: продуцентами, консументами, редуцентами, совместная деятельность, которых обеспечивает извлечение веществ из внешней среды, их трансформацию на различных уровнях трофических цепей и минерализацию органических веществ до составляющих, доступных для очередного включения в круговорот.

Продуценты - это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. В се продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоавтотрофов.

Консументы - живые существа, не способные строить свое тело на базе использования неорганических веществ, требующих поступления органического вещества извне, в составе пищи. Организмы потребляющие органические вещества по ходу в потоке веществ круговорота они занимают уровень потребителей, облигатно обязанных с автотрофными организмами (консументы 1 порядка) или с другими гетеротрафами, которыми они питаются (консументы П порядка).

СОЛНЦЕ
КОНСУМЕНТЫ 1 ПОРЯДКА
ПРОДУЦЕНТЫ КОНСУМЕНТЫ П ПОРЯДКА
РЕДУЦЕНТЫ
МИНЕРАЛЬНЫЕ ВЕЩЕСТВА

Упрощенная схема переноса вещества и энергии в процессе биогенного круговорота (Никоноров и др.)

Значение консументов в круговороте веществ:

1. В процессе метаболизма гетеротрофы разлагают полученные в составе пищи органические вещества. Трансформация первично редуцируемых автотрофами веществ в организмах консументов ведет к увеличению разнообразия живого вещества, а это является необходимым условием устойчивости любой экосистемы (принцип Эшбина внешнего и внутреннего возмущения).

2. Животные, составляющие основную часть организмов консументов, подвижны, способны к активному перемещению в пространстве. Этим они способствуют миграции живого вещества, дисперсии его на поверхности планеты, что стимулирует пространственное расселение жизни и служит своеобразным гарантийным механизмом на случай уничтожения жизни в каком-то одном месте.

3. Важная роль консументов, особенно животных, как регуляторов интенсивности потока вещества и энергии.

Редуценты - организмы разлагающие вещества, частичная минерализация органического вещества идет у всех животных, так в процессе дыхания выделяется СО2 , выводится Н2О, минеральные соли, аммиак.

Истинными редуцентами, завершающими цикл разрушения органических веществ, можно считать лишь такие организмы, которые выводят во внешнею среду только неорганические вещества, готовые к вовлечению в новый круговорот. В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма - это организмы восстановители (N де нитрифицирующие бактерии, восстанавливают азот до элементарного состояния).

ТРОФИЧЕСКИЕ УРОВНИ И ИХ ХАРАКТЕРИСТИКА

Все организмы, выполняющие в экосистеме трофические функции составляют трофические уровни:

1. Трофический уровень образуют автотрофные организмы. Они создают уровень первичной продукции и являются первичными продуцентами. Именно они утилизируют внешнюю энергию солнца, создают массу органического вещества (биомассу), являются основой существования жизни вообще и биоценоза в частности.

Живые организмы рождаются, растут, развиваются, в ходе этих процессов меняется их биомасса. Биомассу выражают в единицах энергии или массы не единицу площади (N: ДЖ/м, или т/м). В сообществах основная доля биомассы приходится на растения (первичная продукция - автотрофы).

Количество создаваемой автотрофами продукции называется первичной продукцией, при этом общее количество биомассы называется валовой продукцией , а прирост биомассы - чистой продукцией.

Часть энергии идет на поддержание жизни и дыхания самих растений - это составляет 40-70% от валовой продукции. Разница между валовой продукцией и дыханием и есть чистая продукция.

Чистая продукция - это скорость наращивания биомассы доступной для потребления гетеротрофов.

Скорость образования первичной продукции называетсябиологической продуктивностью экосистемы. Выражается она в единицах энергии или вещества, отнесенных к площади за 1 сутки.

Животные, грибы, бактерии получают энергию, питаясь растениями (автотрофами) или другими организмами, которые тоже питаются растениями и по характеру питания являются гетеротрофами. Их относят к вторичным продуцентам.

Количество биомассы создаваемое вторичными продуцентами называется вторичной продукцией. Это группу объединяютво второй трофический уровень, который представлен консументами. Их называют трансформаторами-гетеротрофами.

Консументы выделяют различные биоактивные вещества, стимулирующие или угнетающие другие организмы. В этой группе выделяется несколько уровней:

n Консументы 1 порядка

n Консументы П порядка

n и другие.

Третья группа организмов образует в экосистеме функционирующего биоценоза - редуценты.

Различают следующие группы потребителей мертвых организмов:

1. Некрофаги (труппы животных);

2. Копрофаги (экскременты);

3. Сапрофаги (мертвые растительные остатки);

4. Детритофаги (потребители полуразрушенных органических веществ).

В общих чертах редуценты можно разделить на фитофаги, зоофаги, миксофаги (смешанные). Вклад каждой группы в функционирование экосистемы неравноценен.

N: для полного круговорота вещества в водоеме видовой состав продуцентов и редуцентов не имеет большого значения, а для промысловых организмов - решающее.

Организмы разных групп по-разному реагируют на антропогенные воздействия.

ТИПЫ ВЗАИМООТНОШЕНИЙ

Выделяют следующие типы взаимоотношений между популяциями:

n нейтрализм при котором ассоциация двух популяций не сказывается ни на одной из них;

n взаимное конкурентное подавление , при котором обе популяции активно подавляют друг друга;

n конкуренция из-за ресурсов, при которой каждая популяция неблагоприятно действует на другие при борьбе за пищевые ресурсы в условиях их недостатка;

n аменсализм, при которой одна популяция подавляет другую, но сама не испытывает отрицательного влияния;

n хищничество - одна популяция неблагоприятно воздействует на другую в результате прямого нападения, но тем не менее зависит от другой;

n комменсализм - одна популяция извлекает пользу из объединения, для другой это объединение безразлично;

n протокооперация - обе популяции используют преимущество от объединения, но их связь не облигатна (не обязательна);

n мутуализм - связь популяций благоприятна для роста и выживания обоих.

Ю.Одум подчеркивает 2 важных принципа:

1. В ходе эволюции и развития экосистем существует тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, увеличивающих выживание взаимодействующих видов.

В рамках биосферы как целостности такого не происходит, так как опасности и преодоления их способствуют эволюции.

В природе нет ничего вредного для вида, так как, что вредно для индивида и популяции, полезно для вида с эволюции. Концепция ко эволюции хорошо объясняет эволюцию в системе "хищник-жертва" - постоянное совершенствование и того и другого компонента экосистемы.

Условием уменьшения отрицательного воздействия является стабильность экосистемы и то, что ее пространственная структура обеспечивает возможность взаимного приспособления популяций. Отрицательные и положительные отношения между популяциями в экосистеме, которые достигают стабильного состояния, в конце концов уравновешивают друг друга.


Процессы нитрификации и денитрификации были сбалансированы вплоть до начала интенсивного использования человеком азотных минеральных удобрений в целях получения больших урожаев сельскохозяйственных растений. В настоящее время из-за использования громадных объемов таких удобрений наблюдается накопление азотистых соединений в почве, растениях, грунтовых водах. Таким образом, роль живых организмов в круговороте азота является основной.

Круговорот веществ - основа бесконечности жизни на нашей планете. В нем принимают участие все живые организмы, осуществляя процессы питания, дыхания, выделения, размножения. Основой биогенного круговорота является солнечная энергия, которая поглощается фототрофными организмами и преобразовывается ими в первичное органическое вещество, доступное консументам. В ходе дальнейшей трансформации консументами разных порядков энергия пищи постепенно растрачивается, уменьшается. Поэтому устойчивость биосферы напрямую связана с постоянным притоком солнечной энергии. В биогеохимических циклах углерода и азота основную роль играют живые организмы, в то время как основу глобального круговорота воды в биосфере обеспечивают физические процессы.

В.И. Вернадский пришел к выводу о том, что для обеспечения своей устойчивости жизнь должна быть непременно представлена в разных формах. Действительно, если предположить, что жизнь зародилась где-нибудь в океане в форме только одного биологического вида, то через некоторое время он извлечет из среды все, что ему нужно, выделит отходы своей деятельности, усеет все дно морей своими останками, и на этом жизнь прекратится: превратить эти останки в минеральные вещества будет некому. Вот почему жизнь как устойчивое планетарное явление возможна только тогда, когда она разнокачественна. Эта разнокачественность в существующей на Земле биосфере характеризуется наличием трех составляющих: продуцентов, консументов и редуцентов.

Трофическая иерархия биосферы выражается в сложных пищевых связях между составляющими ее видами, это совокупность организмов, объединенных типом питания. Автотрофные организмы (преимущественно зеленые растения) занимают первый трофический уровень (продуценты), далее следуют гетеротрофы: на втором уровне растительноядные животные (консументы 1 порядка); хищники, питающиеся растительноядными животными - на третьем (консументы 2 порядка); вторичные хищники - на четвертом (консументы 3 порядка). Сапротрофные организмы (редуценты) могут занимать все уровни, начиная со второго. Организмы различных трофических цепей, получающие пищу через равное число звеньев, находятся на одном трофическом уровне. Соотношение различных трофиеских уровней можно графически изобразить в виде пирамиды.

Рис.1.Пирамида биомасс и трофические уровни в экосистеме

Экологические пирамиды чисел, биомассы и энергии, изображенные в виде графических моделей, выражают количественные соотношения разных по способу питания организмов: продуцентов, консументов и редуцентов. Продуцентами называются организмы, способные к фото - и хемосинтезу и являющиеся в пищевой цепи веществ первым звеном, созидателем органических веществ из неорганических. К продуцентам относятся практически все растения.

Консументами называются организмы, являющиеся в пищевой цепи потребителями органического вещества. Консументы питаются растениями, животными или и растениями и животными. Различают консументы первого и второго порядка. К животным первого порядка относятся все растительноядные животные, к животным второго - хищники. Редуцентами называются организмы, разлагающие мертвые органические вещества (трупы, отбросы) и превращающие их в неорганические вещества, которые могут быть усвоены вновь. К редуцентам относятся бактерии и грибы. В пищевой цепи редуценты относятся к консументам. Взаимодействие продуцентов, консументов и редуцентов обеспечивает постоянство, устойчивость биологического круговорота. Вследствие этого круговорота разнообразные формы жизни влияют на окружающую среду, организуют ее химизм, изменяют рельеф местности и микроклиматические условия. Зоны, в которых осуществляется биогенный круговорот, называются экосистемами или, как их назвал В.Н. Сукачев, биогеоценозами. Они представляют собой однородные участки земной поверхности с установившимися составами живых существ (биоценозов) и косных компонентов (почв, приземных слоев атмосферы, солнечной энергии), находящихся во взаимодействии. Последнее связано с обменом веществ и энергии. Вся совокупность биогеоценозов, имеющихся на Земле и осуществляющих биогенный круговорот веществ, составляет биосферу в целом.

Во всех биогеоценозах продуценты, консументы и редуценты составляют разнообразные наборы. Это является гарантией того, что если что-то случится с одним из видов, то его долю влияния на биосферу возьмут на себя другие виды, и биогеоценоз не разрушится. Взаимосвязь биогеоценозов обеспечивает устойчивость жизненных процессов на планете в целом. Эта гарантия обеспечивается также тем, что различных биогеоценозов много: если где-то на Земле произойдет какой-то катаклизм (извержение вулкана, опускание земной коры, наступление/отступление моря, геологический сдвиг, похолодание и т.п.), то другие биогеоценозы поддержат существование жизни и со временем восстановят равновесие. Например, после того как на острове Кракатау в результате извержения вулкана в 1883 году было полностью уничтожено все живое, через полвека жизнь на острове восстановилась.

Итак, биосфера - это система биогеоценозов. Каждый из них представляет собой самостоятельную биологическую систему, точнее подсистему. Она обеспечивает поддержание биогенного круговорота в конкретных географических условиях. Каждый биогеоценоз имеет свой набор видов, связанных друг с другом. Но взаимоотношения в биогеоценозах строятся не на уровне видов (ибо их представители могут обитать не только в данном биогеоценозе) и не на уровне особей (ибо тут они в основном пищевые и потому кратковременные), а на уровне популяций видов. Под популяцией понимается совокупность особей одного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений. Популяции за время совместной эволюции видов в составе биогеоценоза приспосабливаются друг к другу и стремятся устойчиво поддерживать соответствующие трофические цепи.

Пищевая (трофи́ческая) цепь - ряды видов растений, животных, грибов и микроорганизмов, которые связаны друг с другом отношениями: пища - потребитель. Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80-90 %) потенциальной энергии, рассеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4-5.

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или пх биомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.

Трофическую структуру обычно изображают в виде экологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями - консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энер гии, а скорость продуцирования пищи. Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние. Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи (С). Часть ее идет на построение новых клеток, т.е. на прирост (Р). Часть энергии пищи расходуется на обеспечение энергетического обмена или на дыхание. Поскольку усвояемость пищи не может быть полной, т.е.100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма (F). Балансовое равенство будет выглядеть следующим образом:

С = Р + R + F.

Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего. Именно поэтому большие хищные животные всегда редки. Поэтому также нет хищников, которые питались бы волками. В таком случае они просто не прокормились бы, поскольку волки немногочисленны.

Пирамида биомасс - это соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т.е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

Пирамида чисел ( численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

Вид, являющийся потребителем, не может полностью уничтожить всю популяцию своих потенциальных жертв: в противном случае он погибнет сам. В свою очередь, уровень плодовитости жертв эволюционно складывается с учетом того, что часть популяции будет уничтожена хищниками. Но естественно, что всегда имеются ограничения и на численность самих хищников. Это поддерживает равновесие системы.

Любая популяция сама по себе также является устойчивой биологической системой. Для обеспечения этого она непрерывно воспроизводит свой вид в биогеоценозе, в котором существует. Законы самоорганизации биосферы таковы, что между особями популяции складываются взаимоотношения, направленные на организацию выполнения этой функции. В частности, при благоприятных условиях существования популяции ее особи начинают размножаться более интенсивно. Это приводит к тому, что между отдельными особями возникает конкуренция (из-за территории, самок и т.п.). Для популяции становится выгодно, чтобы часть особей размножаться перестала и рост численности замедлился. Понятно, что для особи отказ от создания потомства ненормален, но для популяции это необходимая реакция на ее чрезмерную численность. Например, при определенной плотности внутри сообщества грызунов начинают обостряться внутренние отношения. При этом агрессивные формы отношений начинают преобладать над коммуникативными, возникает обстановка стресса. Последний приводит к гибели отдельных особей или к блокировке у некоторых из них поступления в кровь половых гормонов.

При резком ухудшении условий существования (чрезмерно расплодились хищники, ухудшились климатические условия, стало мало корма и т.п.) популяция начинает сокращаться. Тогда включаются природные механизмы, стимулирующие размножение. Но популяция всегда стремится к оптимальному уровню своей численности, и, следовательно, для любой популяции характерен процесс саморегуляции. Таким образом, биосфера представляет собой систему, в которой в качестве подсистемы выступают биогеоценозы. Каждый биогеоценоз, в свою очередь, является самостоятельной системой, в которой в качестве подсистемы выступают популяции. В них же подсистемами являются отдельные организмы. Каждый организм, естественно, представляет собой отдельную биологическую систему. Последняя является основной единицей обмена веществ. Биогенный круговорот веществ в планетарном масштабе возможен только потому, что все организмы осуществляют его с окружающей средой непрерывно. Именно с организма начинается цепь взаимоотношений между составляющими живой материи. И ни на одном уровне эту цепь прерывать нельзя, ибо все они связаны между собой функционально. А значит биосфера, являясь целостной иерархией подчинена этой закономерности.



ТРОФИЧЕСКИЙ УРОВЕНЬ

ТРОФИЧЕСКИЙ УРОВЕНЬ совокупность организмов, занимающих определенное положение в общей цепи питания. Удаленность организмов от продуцентов одинакова. Они характеризуются определенной формой организации и утилизации энергии. Организмы разных трофических цепей, получающие пищу через равное число звеньев в трофической цепи, находятся на одном трофическом уровне. На каждом трофическом уровне потребленная пища ассимилируется не полностью, т. к. значительная ее часть теряется, тратится на обмен. Поэтому продукция организмов каждого последующего трофического уровня всегда меньше (в среднем в 10 раз) предыдущего. Соотношение различных трофических уровней можно графически изобразить в виде экологической пирамиды. См. также Экологическая эффективность .

Экологический энциклопедический словарь. - Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .

ТРОФИЧЕСКИЙ УРОВЕНЬ совокупность организмов, объединенных типом питания. Автотрофные организмы (преимущественно зеленые растения) занимают первый трофический уровень (продуценты), далее следуют гетеротрофы: на втором уровне растительноядные животные (консументы 1 порядка); хищники, питающиеся растительноядными животными - на третьем (консументы 2 порядка); вторичные хищники - на четвертом (консументы 3 порядка). Сапротрофные организмы (редуценты) могут занимать все уровни, начиная со второго. Организмы различных трофических цепей, получающие пищу через равное число звеньев, находятся на одном Т.у. Соотношение различных Т.у. можно графически изобразить в виде пирамиды экологической.

Экологический словарь , 2001

Трофический уровень

совокупность организмов, объединенных типом питания. Автотрофные организмы (преимущественно зеленые растения) занимают первый трофический уровень (продуценты), далее следуют гетеротрофы: на втором уровне растительноядные животные (консументы 1 порядка); хищники, питающиеся растительноядными животными - на третьем (консументы 2 порядка); вторичные хищники - на четвертом (консументы 3 порядка). Сапротрофные организмы (редуценты) могут занимать все уровни, начиная со второго. Организмы различных трофических цепей, получающие пищу через равное число звеньев, находятся на одном Т.у. Соотношение различных Т.у. можно графически изобразить в виде пирамиды экологической.

EdwART. Словарь экологических терминов и определений , 2010


Смотреть что такое "ТРОФИЧЕСКИЙ УРОВЕНЬ" в других словарях:

    Совокупность организмов, объединяемых типом питания. Представление о Т. у. позволяет понять динамику потока энергии и определяющую его трофич. структуру. Автотрофные организмы (преим. зелёные растения) занимают первый Т. у. (продуценты),… … Биологический энциклопедический словарь

    трофический уровень - 1. Уровень, на котором энергия в форме пищи передается от одного организма к другому как часть трофической цепи. 2. Уровень распространения питательных веществ в водоеме, особенно по отношению к содержанию в воде нитратов и фосфатов … Словарь по географии

    ТРОФИЧЕСКИЙ УРОВЕНЬ, положение, которое организм занимает в ПИЩЕВОЙ ЦЕПИ. Обычно определяется границами, в которых осуществляется питание. Первым трофическим звеном являются ПЕРВИЧНЫЕ ПРОИЗВОДИТЕЛИ зеленые растения, использующие фотосинтез для… … Научно-технический энциклопедический словарь

    трофический уровень - Совокупность организмов одной экосистемы, объединенных типом питания Тематики биотехнологии EN trophic level … Справочник технического переводчика

    трофический уровень - 3.23 трофический уровень: Элемент функциональной классификации организмов в пределах сообщества, в основе которой лежат применяемые продукты питания.

1 уровень, продуценты

2 уровень, заяц

3 уровень, лиса

4 уровень, орёл

Трофический уровень - единица, обозначающая удалённость организма от продуцентов в пищевой (трофической) цепи. Слово трофический происходит от греческого τροφή (trophē) - еда.

Как количество трофических уровней, так и их сложность изучения увеличиваются, исключение составляют периодические массовые вымирания.

Уровни

В трофической цепи имеются несколько уровней. Пищевая цепочка начинается на уровне 1 - на нём находятся продуценты, такие как растения. На уровне 2 находятся травоядные животные, которые питаются продуцентами. Плотоядные животные находятся на уровне 3. Иногда пищевая цепь заканчивается сверххищниками , которые находятся на трофических уровнях 4 или 5. Экологические сообщества с более высоким биоразнообразием образуют более сложные трофические пути.

Способы получения пищи

Понятие «трофический уровень» было введено Раймондом Линдеманом в 1942 году на основе терминологии Августа Тьенманна (1926), который назвал способы получения пищи:

Трофические уровни не всегда определяются натуральными целыми числами, потому что организмы часто питаются разной едой и находятся более чем на одном трофическом уровне. Например, некоторые плотоядные животные также едят растения. Крупный хищник может питаться как более мелкими хищниками, так и травоядными. Косатки являются сверххищниками, но они делятся на отдельные виды, охотящиеся на конкретных жертв - тунца, мелких акул и тюленей. Даниэль Поли представил вычисления трофических уровней:

T L i = 1 + ∑ j (T L j ⋅ D C i j) {\displaystyle TL_{i}=1+\sum _{j}(TL_{j}\cdot DC_{ij})\!} ,

где T L j {\displaystyle TL_{j}} является трофическим уровнем добычи j , а D C i j {\displaystyle DC_{ij}} является долей j в рационе организма i .

Перенос энергии пищи от её источника - автотрофов (растений) - через ряд организмов, происходящий путём поедания одних организмов другими, называется пищевой цепью. При каждом переносе большая часть (80-90%) потенциальной энергии теряется, переходя в тепло. Поэтому, чем короче пищевая цепь (чем ближе организм к её началу) , тем больше количество энергии, доступной для популяции. Пищевые цепи можно разделить на два основных типа: пастбищная цепь, которая начинается с зелёного растения и идёт далее к пасущимся растительноядным животным (т.е. к организмам, поедающим живые растительные клетки или ткани) и к хищникам (организмам, поедающим животных), и детритная цепь , которая от мёртвого органического вещества идёт к микроорганизмам, а затем к детритофагам и к их хищникам. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом, образуя, так называемые пищевые сети. В сложных природных сообществах организмы, получающие свою энергию от Солнца через одинаковое число ступеней, считаются принадлежащими к одному трофическому уровню. Так, зелёные растения занимают первый трофический уровень (уровень продуцентов), травоядные - второй (уровень первичных консументов), первичные хищники, поедающие травоядных, - третий (уровень вторичных консументов), а вторичные хищники - четвёртый (уровень третичных консументов).

Пищевые цепи знакомы каждому из нас: человек съедает крупную рыбу, а она ест мелких рыб, поедающих зоопланктон, который питается фитопланктоном, улавливающим солнечную энергию, или же человек может употреблять в пищу мясо коров, которые едят траву, улавливающую солнечную энергию, он может использовать и гораздо более короткую пищевую цепь, питаясь зерновыми культурами, которые улавливают солнечную энергию. В последнем случае человек является первичным консументом на втором трофическом уровне. В пищевой цепи трава - коровы - человек он является вторичным консументом на третьем трофическом уровне. Но чаще человек является одновременно и первичным и вторичным консументом, так как в его диету обычно входит смесь растительной и животной пищи.

При каждом переносе пищи часть потенциальной энергии теряется. Прежде всего, растения фиксируют лишь малую долю поступающей энергии солнечного излучения. Поэтому число консументов (например, людей), которые могут прожить при данном выходе первичной продукции, сильно зависит от длины цепи, переход к каждому следующему звену в нашей традиционной сельскохозяйственной пищевой цепи уменьшает доступную энергию примерно на порядок величины (т.е. в 10 раз). Поэтому если в рационе увеличивается содержание мяса, то уменьшается число людей, которых можно прокормить. Если окажется, что на основе имеющейся первичной продукции придётся кормить очень много новых ртов, то нужно вовсе отказываться от мяса или резко снизить его потребление.

Некоторые вещества по мере продвижения по цепи не рассеиваются, а наоборот накапливаются. Это так называемое концентрирование в пищевой цепи (биоконцентрирование) нагляднее всего демонстрируют устойчивые радионуклиды и пестициды.

Тенденция некоторых радионуклидов, побочных продуктов деления ядра атома увеличивать свою концентрацию с каждым этапом пищевой цепи была обнаружена в 50-ых годах. Крайне малые (следовые) количества радиоактивного J, P, Cs, Se в реке Колумбия концентрировались в тканях рыб и птиц. Было обнаружено, что коэффициент накопления (соотношение количества вещества в тканях и окружающей среде) радиоактивного фосфора в яйцах гусей равен 2 млн. Таким образом, безопасные выбросы в реку могут стать крайне опасными для высших звеньев пищевой цепи.

Пример: ДДТ (4,4 - дихлордифенил трихлорметилметан). Чтобы сократить численность комаров на Лонг-Айленде, болота много лет опыляли ДДТ. Специалисты по борьбе с насекомыми не применяли таких концентраций, которые были бы непосредственно летальны для рыбы и других животных, но они не учли экологических процессов и длительного сохранения остатков ДДТ. Вместо того, чтобы смываться в море, ядовитые остатки адсорбированные на детринге, концентрировались в тканях детрингофагов и мелких рыб и далее - в хищниках высшего порядка (рыбоядные птицы). Коэффициент концентрации (отношение содержания ДДТ в организме к содержанию в воде, выраженное в частях на миллион) составляет для рыбоядных животных около 500 000. У рыб и птиц накоплению способствует значительные жировые накопления, в которых концентрируется ДДТ. Птицы особенно чувствительны к отравлению ДДТ, т.к. этот яд (и др. инсектициды, представляющие собой хлорированные углеводороды) посредством снижения в крови концентрации стероидных гормонов нарушает образование яичной скорлупы; тонкая скорлупа лопается ещё до того, как разовьётся птенец. Таким образом, очень малые дозы, неопасные для особи, оказываются летальными для популяции.

Принципы биологического накопления надо учитывать при любых решениях, связанных с поступлением загрязнений в среду. Многие небиологические факторы, однако, могут уменьшать или увеличивать коэффициент концентрации. Так, человек получает меньше ДДТ, чем птица, т.к. при обработке и варке пищи часть этого вещества удаляется.

Трофический уровень - это совокупность организмов, занимающих определённое место в пищевой сети.

I трофический уровень - всегда растения,

II трофический уровень - первичные консументы

III трофический уровень - вторичные консументы и т.д.

Детритофаги могут находиться на II и выше трофическом уровне.

Обычно в экосистеме насчитывается 3-4 трофических уровня.

Трофическую структуру можно измерить и выразить либо урожаем на корню (на единицу площади), либо количеством энергии, фиксируемой на единице площади за единицу времени на последовательных трофических уровнях.

Трофическую структуру и трофическую функцию можно изобразить графически в виде экологических пирамид , основанием которых служит первый уровень (уровень продуцентов), а последующие уровни образуют этажи и вершину пирамиды. Экологические пирамиды можно отнести к трём основным типам:

    пирамида чисел, отражающая численность отдельных организмов;

    пирамида биомассы , характеризующая общую сухую массу, калорийность или другую меру общего количества живого вещества;

    пирамида энергии показывающая величину потока энергии и «продуктивность» на последовательных трофических уровнях. С каждым переходом из одного трофического уровня в другой в пределах пищевой цепи или сети совершается работа и в окружающую среду выделяется тепловая энергия, а количество энергии высокого качества, используемой организмами следующего трофического уровня, снижается. Процентное содержание энергии высокого качества, переходящей из одного трофического уровня в другой колеблется от 2 до 30%. Большая часть энергии теряется в окружающей среде как тепловая энергия низкого качества. Чем длиннее пищевая цепь, тем больше теряется полезной энергии. Пирамида энергетических потоков объясняет, почему можно прокормить большее количество людей, если сократить пищевую цепь до прямого потребления зерновых (рис – человек), чем если в качестве пищи использовать животных, потребляющих зерно. Чтобы избежать белкового (протеинового) недоедания, вегитарианское питание должно состоять из разнообразных растений.

Пирамиды чисел Можно собрать все образцы организмов в экосистеме и подсчитать численность всех видов, обнаруженных на каждом трофическом уровне. Такая информация необходима для создания пирамиды численностей. Например, миллион особей фитоплангтона в небольшом пруду может прокормить 10 000 особей зооплангтона, которые в свою очередь прокормят 100 окуней, которых будет достаточно, чтобы прокормиться одному человеку в течение месяца.

Рис. 3.2 Пирамида чисел

Но для некоторых экосистем пирамиды численностей имеют другую форму. Например, в лесу небольшое количество больших деревьев, таких как секвойя вечнозеленая, снабжает пищей огромное количество небольших по размеру насекомых-фитофагов и птиц – консументов первого порядка.

Пирамида биомассы , характеризующая массу живого вещества (на ед. площади или объема). Каждый трофический уровень пищевой цепи или сети содержит определённое количество биомассы. В наземных экосистемах действует следующее правило пирамиды биомасс : суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников.

Для океана правило пирамиды биомасс недействительно – пирамида имеет перевернутый (обращенный) вид . Для экосистемы океана характерно накаливание биомассы на высоких уровнях, у хищников. Хищники живут долго, и скорость оборота их регенерации мала, но у продуцентов – фитопланктонных водорослей оборачиваемость в сотни раз превышает запас биомассы.

Рис. 3.3 Пирамида биомассы

Пирамиды чисел и биомассы могут быть обращёнными, (или частично обращёнными), т.е. основание может быть меньше, чем один или несколько верхних этажей. Так бывает, когда средние размеры продуцентов меньше размеров консументов. Напротив, энергетическая пирамида всегда будет сужаться к верху, при условии, что мы учитываем все источники пищевой энергии в системе.

ddvor.ru - Одиночество и расставания. Популярные вопросы. Эмоции. Чувства. Личные отношения