Теория происхождения Земли О. Ю. Шмидта. Происхождение Земли (От Большого Взрыва до возникновения Земли)

По мнению геохимиков США, столкновение Земли с небесным телом Тейя, которое предположительно произошло около 4.5 миллиардов лет назад, если и имело место быть, не внесло больших изменений в структуру недр. По крайней мере, в раскаленный шар наша планета точно не превращалась.

Современная гипотеза происхождения Земли до сих пор является предметом жарких кабинетных споров, однако большинство ученых сходятся в том, что началось все из протопланетного облака из космической пыли и газа. Одни ученые были уверены, что оно было холодным, другие — что, наоборот, раскаленным, поскольку оно было выдернуто из молодого Солнца гравитацией массивной звезды, проходившей в то время неподалеку. Последняя версия сегодня стремительно теряет своих поклонников, поскольку астрофизиками было доказано, что подобная трактовка событий крайне маловероятна. Поэтому сегодня главенствует гипотеза о холодном протопланетном облаке.

Приблизительно 4.54 миллиарда лет назад из этого протопланетного облака и начала формироваться Земля. Сам процесс происходил, вероятно, следующим образом: поскольку в этом облаке «легкие» и «тяжелые» элементы еще не были сильно перемешаны, то в результате действия силы тяжести вторые (железо и другие родственные металлы) начали опускаться к будущему центру планеты, выдавливая на поверхность более «легкие» элементы. Этот процесс ученые назвали гравитационной дифференциацией.

Таким образом, железо накапливалось в центре облака, формируя будущее ядро. Но во время опускания потенциальная энергия слоя «тяжелых» элементов начала уменьшаться, соответственно стала увеличиваться кинетическая энергия, то есть происходил нагрев. Считается, что это тепло разогрело нашу планету до 1200 градусов по Цельсию (местами — и до 1600 градусов).

Однако воздействие самого совершенного в природе холодильника - космоса, привело к тому, что поверхность облака из «легких» элементов начала быстро остывать, превращаясь из расплава в твердое вещество. Именно так формировалась земная кора. А та область, где гравитационная дифференциация продолжилась (по расчетам некоторых геофизиков, этот процесс будет продолжаться еще около полутора миллиарда лет), и высокая температура сохранилась, стала современной мантией.

Примерно 4.5 миллиарда лет назад твердой часть Земли полностью сформировалась (хотя атмосфера и гидросфера появились несколько позже). И именно в то время, согласно данным последних исследований, произошла катастрофа, результатом которой было появление спутника и возврат в неструктурированное состояние. По мнению многих ученых, скорее всего, произошло столкновение с неким массивным небесным телом (получившим название планета Тейя).

При этом отдельные геофизики уверены, что столкновение было столь внушительным, что верхняя часть Земли опять расплавилась. То есть какое-то время планета была шаром из расплавленного однородного вещества, после чего за несколько десятков миллионов лет опять обзавелась твердой поверхностью.

И все же некоторые ученые выразили сомнение в том, что последствия этого столкновения были настолько весомыми. Они уверены, что даже столкновение с небесным телом не могло кардинально изменить сложившуюся структуру нашей планеты. Совсем недавно эта версия получила доказательства своей правдоподобности. А представили эти доказательства камни, обнаруженные возле Костомукши.

Научный подход к вопросу о происхождении Земли и Солнечной системы стал возможен после укрепления в науке мысли о материальном единстве во Вселенной. Возникает наука о происхождении и развитии небесных тел - космогония.

Первые попытки дать научное обоснование вопросу о происхождении и развитии Солнечной системы были сделаны 200 лет назад.

Все гипотезы о происхождении Земли можно разбить на две основные группы: небулярные (лат. «небула» - туман, газ) и катастрофические. В основе первой группы лежит принцип образования планет из газа, из пылевых туманностей. В основе второй группы - различные катастрофические явления (столкновение небесных тел, близкое прохождение друг от друга звезд и т.д.).

Одна из первых гипотез была высказана в 1745 году французским естествоиспытателем Ж.Бюффоном. Согласно этой гипотезе, наша планета образовалась в результате остывания одного из сгустков солнечного вещества, выброшенного Солнцем при катастрофическом столкновении его с крупной кометой. Мысль Ж.Бюффона об образовании Земли (и других планет) из плазмы была использована в целой серии более поздних и более совершенных гипотез «горячего» происхождения нашей планеты.

Небулярные теории. Гипотеза Канта и Лапласа

Среди небулярных теорий, безусловно, ведущее место занимает гипотеза, разработанная немецким философом И.Кантом (1755). Независимо от него другой ученый - француский математик и астроном П. Лаплас - пришел к тем же выводам, но разработал гипотезу более глубоко (1797). Обе гипотезы сходны между собой по существу и часто рассматриваются как одна, а авторов ее считают основоположниками научной космогонии.

Гипотеза Канта - Лапласа относится к группе небулярных гипотез. Согласно их концепции, на месте Солнечной системы располагалась ранее огромная газо-пылевая туманность (пылевая туманность из твердых частиц, по мнению И. Канта; газовая - по предположению П.Лапласа). Туманность была раскаленной и вращалась. Под действием законов тяготения материя ее постепенно уплотнялась, сплющивалась, образуя в центре ядро. Так образовалось первичное солнце. Дальнейшее охлаждение и уплотнение туманности привелок увеличению угловой скорости вращения, вследствие чего на экваторе произошло отделение наружной части туманности от основной массы в виде колец, вращающихся в экваториальной плоскости: их образовалось несколько. В качестве примера Лаплас приводил кольца Сатурна.

Неравномерно охлаждаясь, кольца разрывались, и вследствие притяжения между частицами происходило образование планет, обращающихся вокруг Слнца. Остывающие планеты покрывались твердой коркой, на поверхности которой стали развиваться геологические процессы.

И.Кант и П.Лаплас верно подметили основные и характерные черты строения Солнечной системы:

  • 1) подавляющая часть массы (99,86%) системы сосредоточена в Солнце;
  • 2) планеты обращаются почти по круговым орбитам и почти в одной и той же плоскости;
  • 3) все планеты и почти все их спутники вращаются в одну и ту же сторону, все планеты вращаются вокруг своей оси в ту же сторону.

Значительной заслугой И.Канта и П. Лапласа явилось создание гипотезы, в основу которой была положена идея развития материи. Оба ученых считали, что туманность обладала вращательным движением, вследствие чего произошло уплотнение частиц и образование планет и Солнца. Они полагали, что движение неотделимо от материи и так же вечно,как и сама материя.

Гипотеза Канта-Лапласа существовала в течене почти двух сотен лет. Впоследствии была доказана ее несостоятельность. Так, стало известно, что спутники некоторых планет, например Урана и Юпитера, вращаются в ином направлении, чем сами планеты. По данным современной физики, газ, отделившийся от центрального тела, должен рассеятьсяи не может сформироваться в газовые кольца, а позднее - в планеты. Другими существенными недостатками гипотезы Канта и Лапласа являются следующие: небулярный катастрофический происхождение земля

  • 1. Известно, что момент количества движения во вращающемся теле всегда остается постоянным и распределяется равномерно по всему телу пропорционально массе, расстоянию и угловой скорости соответствующей части тела. Этот закон распространяется и на туманность, из которой сформировались Солнце и планеты. В Солнечной системе количество движения не соответствует закону распределения количества движения в массе, возникшей из одного тела. В планета Солнечной системы сосредоточено 98% момента количества движения системы, а Солнце имеет только 2%, в то время как на долю Солнца приходится 99,86% всей массы Солнечной системы.
  • 2. Если сложить моменты вращения Солнца и других планет, то при расчетах окажется, что первичное Солнце вращалось с той же скоростью, с какой сейчас вращается Юпитер. В связи с этим Солнце должно было обладать тем же сжатием, что и Юпитер. А этого, как показывают расчеты, недостаточно, чтобы вызвать дробление вращающегося Солнца, которое, как считали Кант и Лаплас, распалось вследствие избытка вращения.
  • 3. В настоящее время доказано, что звезда, обладающая избытком вращения, распадается на части, а не образует семейство планет. Примером могут служить спектрально-двойные и кратные системы.

Основным документом, при помощи которого исследуют историю Земли, служит горная порода.

Самые древние свидетельства, имеющиеся в нашем распоряжении, относятся к архейскому времени. Они-то и являются для историка Земли исходными, но очевидно, что хотя многие из древних пород (например, уранинит из Манитобы) образовались около 2 млрд. лет назад, их вовсе нельзя рассматривать как действительное начало геологической летописи. Восстанавливать это начало приходится косвенными способами.

Две коренные проблемы нуждаются в освещении: происхождение Земли и возникновение на ней жизни. Поколения учёных трудились над этими вопросами, но лишь советской науке, вооружённой методом диалектического материализма, оказалось под силу разгадать в общей форме обе мировые загадки.

Наиболее достоверную теорию происхождения планет солнечной системы разработал О. Ю. Шмидт. Теория исходит из факта вращения Галактики и наличия в её центральной плоскости тёмных облаков космической пыли и газа. Солнце, участвуя в галактическом вращении, захватило и увлекло за собой часть такого облака. Возможно также, что Солнце само возникло из подобного облака и захватило вещество из собственной материнской среды. Но в обоих случаях оно оказалось внутри обширного роя твёрдых частиц, двигавшихся вокруг него под влиянием притяжения по эллиптическим орбитам. Пылинки, твёрдые тельца, сталкиваясь в неупругих ударах, теряли часть своей кинетической энергии (она превращалась в теплоту, излучаемую в пространство), что привело сначала к уплотнению роя, а при достижении последним некоторой критической плотности - к образованию сгущений, которые, неоднократно дробясь и снова объединяясь, в конце концов сложились в планеты.

Вблизи Солнца захваченное облако быстро редело: одни его частицы падали на Солнце, другие оттеснялись лучевым давлением к внешней зоне системы; летучие компоненты твёрдых телец испарялись под действием солнечного нагрева. Оттого вблизи Солнца образовались плотные, но сравнительно небольшие планеты, а вдали от него, где такого обеднения исходного материала не было и сохранились газы в твёрдых частицах, возникли планеты большие, но гораздо менее плотные. Этим и объясняется характерное деление планет на внутренние (Меркурий, Венера,. Земля, Марс), обладающие малыми размерами, высокой плотностью, медленным вращением вокруг оси и ограниченным числом (или отсутствием) спутников, и внешние (Юпитер, Сатурн, Уран, Нептун), отличающиеся крупными размерами, малой плотностью, быстрым вращением на оси и большим числом спутников. На самой далёкой окраине облака, где материнский рой сходил на нет, из его остатков возник маленький Плутон (и, возможно, ещё несколько небольших планет, пока не открытых).

Частицы, захваченные Солнцем, могли первоначально двигаться в различных плоскостях, но всё же большинство орбит должно было совпадать с какой-то преобладающей плоскостью. В отношении преобладающей плоскости частицы могли сначала двигаться как в прямом, так и в обратном направлении, но, вследствие неравномерного распределения плотности роя, и здесь одно из направлений должно было стать господствующим. Наконец, эллиптические орбиты частиц могли вначале иметь различно ориентированные оси; однако, взаимодействуя при сближении, тельца взаимно возмущали свои орбиты, что и привело к равномерному распределению осей, т. е. придало орбитам круговую (или очень близкую к ней) форму. Так осреднением динамических и физических характеристик пылинок при слипании их в более крупные тела объясняет теория О. Ю. Шмидта тот факт, что все планеты обращаются вокруг Солнца в одном направлении и имеют почти одинаковые круговые орбиты, лежащие почти в одной плоскости.

Ни одна из многочисленных прежних гипотез не могла объяснить, свойственное солнечной системе распределение момента количества движения: Солнце, обладающее 99% общей массы системы, содержит только 2% момента количества движения, тогда как планеты со своей ничтожной суммарной массой имеют вместе 98% момента количества движения. Момент количества движения есть произведение массы тела на его скорость и на его расстояние от центра вращения. В системе тел момент количества движения есть сумма моментов отдельных тел. Теория Шмидта полностью решает вопрос. Пылевая материя могла быть захвачена Солнцем как на близком, так и на далёком расстоянии. В последнем случае она будет обладать очень большим моментом количества движения. При сложении частиц в планеты этот момент сохраняется.

Наконец, теория впервые научно обосновывает закон планетных расстояний, установленный давно чисто эмпирически, но до последнего времени не поддававшийся истолкованию, и предвычисляет, что расстояния планет от Солнца (в астрономических единицах) должны быть такие: Меркурия 0,39, Венеры 0,67, Земли 1,04, Марса 1,49, Юпитера 5,20, Сатурна 10,76, Урана 18,32, Нептуна 27,88 и Плутона 39,44. Сравнение с действительными расстояниями обнаруживает прекрасное совпадение.

Образование планетных систем в недрах нашей и других галактик закономерно и неизбежно, так как облаков тёмной материи во вселенной много, и звёзды либо возникают из этих скоплений, либо встречаются с ними при своём движении. Мы не видим других планетных систем только потому, что современные астрономические средства наблюдения не позволяют этого.

Из теории О. Ю. Шмидта вытекает, что Земля возникла как холодное тело, так как частицы породившего её роя, вследствие равновесия между поглощением ими солнечного тепла и его обратным излучением в пространство, имели температуру около +4°. Нынешнее тепло внутри Земли - результат последующего разогрева под действием распада радиоактивных веществ. Земля создавалась путём беспорядочного накопления частиц самого различного удельного веса. По достижении планетой определённых размеров началась в вязкой среде гравитационная дифференциация: более плотные вещества очень медленно стали опускаться к центру Земли, более лёгкие всплывать кверху, увлекая с собой и геохимически связанные с ними некоторые тяжёлые минералы (в том числе радиоактивные, чем и объясняется современная концентрация последних в наружных слоях). Этот процесс вряд ли закончился, и дифференциация, сопровождаемая выделением не меньшего количества энергии, чем радиоактивный распад (порядка 6 Х 10 27 эргов, или 10 20 калорий в год), всё ещё играет роль мощного механизма вертикальных перемещений масс в земных недрах.

На определённом этапе (когда масса Земли стала значительной) образовалась атмосфера. Газы были и в захваченном Солнцем пылевом облаке, но всё же в основном первичная атмосфера образовалась в результате «выжимания» газов из недр планеты. Источник земной атмосферы - сама Земля. Древнейшая атмосфера отличалась от нынешней тем, что в ней отсутствовали свободный азот и кислород, но было много паров воды, аммиака и углекислого газа.

Возникновение источников внутренней энергии - радиоактивного распада и гравитационной дифференциации - положило начало тектонической деятельности Земли, - поднятиям и опусканиям обширных участков холодной земной поверхности и процессам вулканизма; появились изверженные породы. Во впадинах литосферы скопилась вода, - обозначилось разделение суши и моря. Под действием воды, воздуха и солнечной радиации начались процессы выветривания, переноса обломочного материала и образования первых осадочных пород.

Неизвестно, когда занялась над пустынной Землёй заря жизни, но произошло это наверное до архея. В самих архейских толщах достоверных остатков организмов нет, однако имеются известковые и углистые породы, возникновение которых чаще всего связано с деятельностью и гибелью животных и растений. Кроме того, организмы, найденные в протерозое, отличаются сложным устройством и обязательно должны были иметь предков, гораздо проще устроенных; если предки эти жили в архее, то жизнь должна была появиться ещё раньше.

Жизнь в тех формах, в каких мы её знаем, возможна лишь на планетах и притом в совершенно определённых условиях. Существование её где-нибудь на раскалённых телах (звёздах) или в межзвёздном пространстве невероятно: в первом случае мешают высокие температуры, во втором случае немыслим обмен веществ. Но и не на всех планетах имеется необходимая для жизни обстановка: одни из них, расположенные близко к звезде, слишком горячи, другие, лежащие далеко от звезды, слишком холодны; одни планеты потеряли атмосферу, у других она состоит из ядовитых газов. Единственно на твёрдой поверхности, в присутствии воды и воздуха благоприятного состава и при наличии надлежащего температурного режима, могут появиться первые комки протоплазмы. В солнечной системе жизнь имеется в расцвете на Земле, в стадии угасания на Марсе и в стадии зарождения на Венере. Несмотря на указанные ограничения условий для жизни, живое в мире не может быть исключительным явлением, свойственным только окрестностям нашего Солнца: даже если в каждой галактике есть хотя бы только одна планета, заселённая организмами, число таких очагов жизни в бесконечной Вселенной не поддаётся исчислению.

Живое вещество - особая стадия развития неорганической материи. Жизнь действительно возникла, а не существовала вечно, как это утверждают некоторые авторы. Идея о вечности жизни, т. е. об изначальном бытии (наряду с простой, неорганизованной материей) таких сложных образований, к каким относятся даже простейшие белковые молекулы, отрицает развитие материи, т. е. направлена вразрез с истиной, научно обоснованной и доказанной.

Открытие общих путей происхождения жизни на Земле принадлежит советскому учёному А. И. Опарину.

Теория А. И. Опарина опирается на факты широкого распространения во вселенной углерода (основного элемента, из которого построены органические вещества) и высокую способность атомов углерода соединяться друг с другом или с атомами других элементов. В разных видах и соединениях углерод обнаружен в звёздах, на планетах и в метеоритах, - в последних либо самородный (графит, алмаз), либо в форме карбидов (соединений с металлами) и углеводородов. Нет оснований отрицать присутствие углерода и в частицах пылевой материи, из которых образовалась Земля; в ныне существующих в Галактике газо-пылевых туманностях недавно установлено наличие водорода, метана, аммиака и воды (льда). Стало быть, углерод и его простейшие соединения в виде углеводородов вошли в состав нашей планеты в первые же дни её рождения.

История углерода на Земле - это сначала история бесчисленного количества химических реакций и дальнейшего взаимодействия углеводородов с парами воды и аммиаком. В результате возникали новые, более сложные вещества, построенные уже из углерода, кислорода, водорода и азота, способные к новым реакциям между собой и с окружающей средой в первичных морях и лагунах, куда они попали из атмосферы. В хаосе этих реакций наметился, в конце концов, путь образования и накопления всё более сложных высокомолекулярных соединений, в том числе и подобных белкам.

В смешанном растворе белковых веществ молекулы разных белков собираются обычно в небольшие агрегаты, имеющие вид капель, плавающих в воде, - явление это называется коацервацией. И если первичные, более простые органические соединения были равномерно рассеяны в воде и от последней не обособлены, то после возникновения белковоподобных соединений произошёл знаменательный скачок: началось обособление коацерватных капель, т. е. противопоставление белковоподобных соединений окружающей их среде. Коацерватная капля - это уже нечто индивидуальное, обладающее своей, хотя ещё и нестойкой, структурой; каждая легко притягивает частицы извне, поглощает их, вступает с ними в химические соединения, которые могут и остаться в капле, следовательно - повести её к росту и внутренней химической перестройке либо к распаду. Если синтез в капле при данных условиях внешней среды идёт быстрее распада - капля становится динамически устойчивой, если распад быстрее синтеза - она разрушается. В коацерватных каплях природа как бы делает первые опыты обмена веществ. Только динамически устойчивые капли (что зависело от их индивидуальных особенностей) могли длительно существовать, расти и «размножаться» делением, а такими могли стать лишь те немногие, качества которых непрерывно изменялись в совершенно определённую сторону, обеспечивающую постоянное самовосстановление всей капли в целом. Возникновение капли с внутренне организованной последовательностью химических реакций, т. е. капли динамически весьма устойчивой и способной к самовоспроизведению, и было тем новым скачком, в результате которого сложное, но неживое органическое образование стало живым существом. По мнению некоторых биологов, приобретение белковоподобными соединениями в ходе их развития основных признаков живого не нуждается в стадии комплексных «надмолекулярных» белковых систем (коацерватных капель): такие признаки неизбежно должны были со временем возникнуть при определённых условиях в самой молекуле первичного белка.

Комочки первозданной жизни не имели ещё клеточной структуры; прошли тысячелетия, прежде чем развились древнейшие одноклеточные организмы, предки многоклеточных. Прошли также тысячелетия, прежде чем изменился и способ питания первых организмов, которые сначала использовали для этой цели только органические вещества, но затем, в связи с уменьшением запасов этой пищи, были как бы поставлены перед выбором: либо погибнуть, либо приобрести умение питаться неорганическими соединениями. В дальнейшем в протоплазме одной группы организмов выработались пигменты, послужившие толчком к появлению простейших растений типа синезелёных водорослей, способных к ассимиляции CO 2 . Водоросли не только резко увеличили количество органического вещества в природе, но и освободили другие группы живых существ от необходимости эволюционировать в сторону автотрофности; эти группы, питавшиеся теперь водорослями, остались гетеротрофными и тем самым стали родоначальниками будущего мира животных.

Колыбелью жизни считают море. Это предположение, хотя и подвергалось сомнению, никогда не было опровергнуто убедительными доводами. Море - исключительно подходящая среда для развития организмов: вода как подвижная стихия обеспечивает приток пищи даже сидячим или пассивно плавающим организмам; море содержит в огромных количествах самые разнообразные вещества, необходимые организмам; наконец, значительная стабильность физических условий и химического состава морской воды делает обмен веществ между организмом и средой не случайным процессом, а регулярным и притом протекающим в постоянно благоприятных условиях. Однако речь идёт прежде всего о прибрежных частях моря, где взаимодействие литосферы, гидросферы и атмосферы, т. е. вся сумма географических условий, наиболее содействует поддержанию жизни.

Мы попытались нарисовать вероятную картину развития Земли и её ландшафтной оболочки за огромный период, предшествующий архею. За этот промежуток времени, охватывающий 3-4 млрд. лет, Земля прошла через следующие этапы:

1. Стадия первоначального сгустка материи в материнском пылевом облаке.

2. Стадия небольшой планеты (сравнимой по объёму с нынешним Меркурием), уже способной удерживать около себя постоянную газовую оболочку. Зачатки тектонической деятельности (источники энергии: распад радиоактивных веществ и, возможно, начало гравитационной дифференциации). Выделение с изверженными породами газов Н 2 O, CO 2 и NH 3 и включение их в состав первичной атмосферы.

3. Земля достигает современных размеров. Её внешняя каменная оболочка - вероятно, базальтового состава. Накопление неживого органического вещества и развитие его в сторону образования высокомолекулярных соединений.

4. Появление доклеточных форм жизни. Организмы только гетеротрофные.

5. Появление одноклеточных организмов и возникновение ветви автотрофных живых существ. Обогащение атмосферы свободным кислородом и азотом за счёт жизнедеятельности микроорганизмов.

Обратимся теперь к более поздним периодам жизни Земли. Несмотря на скудость материалов, мы всё же располагаем здесь многими вполне достоверными фактами, на основании которых удаётся вывести достаточно надёжные общие заключения. Развитие ландшафтной оболочки на протяжении геологического времени разбивают на несколько этапов: самые древние и плохо известные удобно объединить под собирательным названием «докембрийских»; за ними следуют этапы каледонский, герцинский (или варисцийский) и альпийский.

Впервые наиболее соответствующую современным взглядам и достижениям науки гипотезу о происхождении нашей планеты предложил известный советский ученый, академик О. Ю. Шмидт и развили его ученики. По этой теории образовалась путем объединения твердых частиц и никогда не проходила через «огненно-жидкую» стадию. Высокая земных недр объясняется накоплением тепла, выделяющегося при распаде радиоактивных , и лишь в малой степени - теплом, выделившимся при ее образовании.

По гипотезе О. Ю. Шмидта рост Земли происходил за счет частиц, выпадавших на ее поверхность. При этом кинетическая частиц переходила в тепловую. Поскольку выделение тепла происходило на поверхности, большая часть его излучалась в пространство, а небольшая доля шла на нагревание поверхностного слоя вещества. Сперва нагревание возрастало, так как увеличение массы, а вместе с тем и притяжение Земли увеличивало силу ударов. Затем по мере того, как вещество исчерпывалось, процесс роста замедлялся, а нагревание стало уменьшаться. По расчетам советского ученого В. С. Сафронова, наибольшую температуру должны были приобрести те слои, которые находятся ныне на глубине около 2500 километров. Их температура могла превышать 1000°. Но центральные и наружные части Земли были вначале холодными.

Разогрев Земли, как полагают академик В. И. Вернадский и его последователи, целиком обусловлен действием радиоактивных элементов. Вещество Земли содержит небольшую примесь радиоактивных элементов: урана, тория, радия. Ядра этих элементов непрерывно распадаются, превращаясь в ядра других химических элементов. Каждый атом урана и тория, распадаясь, сравнительно быстро превращается в целый ряд промежуточных радиоактивных атомов (в частности, в атом радия) и в конце концов в устойчивый атом того или иного изотопа свинца и несколько атомов гелия. При распаде калия образуются кальций и аргон. В результате распада радиоактивных элементов выделяется тепло. Из отдельных частиц это тепло легко ускользало наружу и рассеивалось в пространстве. Но когда образовалась Земля - тело огромных размеров, тепло стало накапливаться в ее недрах. Хотя в каждом грамме земного вещества за единицу времени (например, за год) выделяется очень мало тепла, за миллиарды лет, в течение которых существует наша планета, его накопилось так много, что температура в очагах недр Земли достигла предельно высокого уровня. Согласно расчетам, поверхностные части планеты, из которых тепло и сейчас продолжает медленно ускользать, вероятно, уже прошли через стадию наибольшего разогрева и начали остывать, но в глубоких внутренних частях разогрев, по-видимому, еще продолжается.

Однако нужно заметить, что, по данным вулканологии и петрографии, мы не находим в земной коре пород, которые образовывались бы при более высоких температурах чем 1200°. И на некоторой глубине их температура обычно ниже, ибо наблюдения показывают, что на воздухе при окислении составных частей, например железа, их температура повышается приблизительно на 50°. Глубинные породы содержат примерно такие же минералы, и, следовательно, температура их образования не выше. Более того, ряд других минералов и обломков углей, включенных в глубинных породах, а также включений в минералах говорят о более низкой температуре глубинной магмы, чем у лавы. Этот разогрев недр никак не отражается на поверхности Земли и на условиях жизни на ней, потому что температура поверхности определяется не внутренним теплом, а теплом, получаемым от Солнца. Из-за малой теплопроводности Земли поток тепла, приходящий из ее недр к поверхности, в 5000 раз меньше потока тепла, получаемого от Солнца.

Вещество Солнца также содержит некоторое количество радиоактивных элементов, но выделяемая ими энергия играет ничтожную роль в поддержании его мощного излучения. Во внутренних частях Солнца давление и температура столь высоки, что там непрерывно происходят ядерные реакции -объединение ядер атомов одних химических элементов в более сложные ядра атомов других элементов; при этом выделяется огромное количество энергии, которая и поддерживает в течение многих миллиардов лет излучение Солнца.

С разогреванием Земли, по-видимому, тесно связано происхождение и гидросферы. и газы попали на Землю вместе с твердыми частицами и телами, из которых она образовалась. Хотя температура частиц в зоне планет земной группы была слишком высокая для того, чтобы могло происходить замораживание газов, но и в этих условиях газовые молекулы обильно «налипали» на поверхность частиц. Вместе с этими частицами они вошли в состав более крупных тел, а затем и в состав Земли. Кроме того, как отметил О. Ю. Шмидт, в зону планет земной группы могли залетать ледяные тела из зоны планет-гигантов. Не успев прогреться и испариться, они могли падать на Землю, отдавая ей воду и газы.

Нагревание - лучший способ изгнать из твердого тела находящиеся в нем газы. Поэтому разогревание Земли сопровождалось выделением газов и водяных паров, содержащихся в небольшом количестве в земных каменистых веществах. Прорвавшись на поверхность, водяные пары сгустились в воды морей и океанов, а газы образовали атмосферу, состав которой первоначально существенно отличался от современного. Теперешний состав земной атмосферы в значительной мере обусловлен существованием на поверхности Земли растительной и животной жизни.

Выделение газов и водяных паров из недр Земли продолжается и поныне. При вулканических извержениях в атмосферу в большом количестве выбрасываются водяные пары и углекислый газ, а в разных местах Земли из недр ее выделяются горючие газы.

По последним данным науки, Земля состоит из:

  1. ядра, по своим свойствам (плотности) подобного железо-никелевым соединениям, а ближе всего к железо-силикатному веществу или металлизированным силикатам;
  2. мантии, состоящей из вещества, по физическим свойствам приближающегося к горным породам гранатовых перидотитов и эклогитов
  3. земной коры, иначе говоря, пленки горных пород - базальтов и гранитов, а также пород, близких к ним по физическим свойствам.

Большой интерес представляет вопрос о том, как отразилась теория О. Ю. Шмидта на теории происхождения жизни на Земле, разработанной академиком А. И. Опариным. Согласно теории А. И. Опарина, живое вещество возникло путем постепенного усложнения состава из простых органических соединений (таких, как метан, формальдегид), растворенных в воде на поверхности Земли.

При создании своей теории А. И. Опарин исходил из распространенного в то время представления о том, что Земля образовалась из раскаленных газов и, пройдя «огненно-жидкую» стадию, затвердела. Но на стадии раскаленного газового сгустка метан не мог существовать. В поисках путей образования метана А. И. Опарин привлек схему его образования в результате воздействия горячих водяных паров на карбиды (соединения углерода с металлами). Он полагал, что метан с водяным паром поднимался по трещинам на поверхность Земли и таким образом оказался в водном растворе. Необходимо отметить, что только образование метана происходило при высокой температуре, а дальнейший процесс, приведший к возникновению жизни, протекал уже в воде, т.е. при температуре ниже 100°.

Исследования показывают, что метан в смеси с водяными парами присутствует в выбросах газа только при температурах ниже 100°. При высоких температурах на раскаленной лаве в выбросах метан не обнаруживается.

Согласию теории О. Ю. Шмидта, газы и водяные пары в небольшом количестве с самого начала вошли в состав Земли. Поэтому вода могла появиться на поверхности Земли еще на ранних стадиях развития нашей планеты. В ней с самого начала присутствовали в растворе углеводы и другие соединения. Таким образом, выводы из новой космогонической теории обосновывают наличие у Земли с начала ее существования как раз тех условий, которые нужны для процесса возникновения жизни по теории А. И. Опарина.

Исследования распространения волн землетрясений, проведенные на рубеже XIX и XX веков, показали, что плотность вещества Земли вначале увеличивается плавно, а затем возрастает скачками. Это подтверждало ранее установившееся мнение о том, что в недрах Земли происходит резкое разделение каменистого вещества и железа.

Как теперь установлено, граница плотного ядра Земли расположена на глубине 2900 километров от поверхности. Поперечник ядра превышает одну вторую поперечника нашей планеты, а масса составляет одну треть массы всей Земли.

Несколько лет назад большинство геологов, геофизиков и геохимиков предполагало, что плотное ядро Земли состоит из никелистого железа, подобного тому, которое присутствует в метеоритах. Считалось, что железо успело стечь к центру, пока Земля была огненно-жидкой. Однако еще в 1939 году геолог В. Н. Лодочников отмечал необоснованность этой гипотезы и указывал на то, что мы плохо знаем поведение вещества при тех огромных давлениях, которые существуют внутри Земли вследствие огромного веса вышележащих слоев. Он предсказывал, что наряду с плавным изменением плотности по мере увеличения давления должны существовать и скачкообразные изменения.

Разрабатывая новую теорию, Шмидт выдвинул предположение, что образование железного ядра произошло в результате разделения вещества Земли под действием силы тяжести. Этот процесс начался после того, как в недрах Земли произошел разогрев. Но вскоре необходимость объяснения образования железного ядра отпала, так как взгляды В. И. Лодочникова получили дальнейшее развитие в виде гипотезы Лодочникова - Рамзея. Скачкообразное изменение свойств вещества при очень высоких давлениях было подтверждено теоретическими расчетами.

Расчеты показывают, что уже на глубине около 250 километров давление в Земле достигает 100 000 атмосфер, а в центре оно превышает 3 миллиона атмосфер. Поэтому даже при температуре в несколько тысяч градусов вещество Земли может быть не жидким в обычном смысле слова, а подобно вару или смоле. Под влиянием длительно действующих сил оно способно на медленные перемещения и деформации. Например, вращаясь вокруг своей оси, Земля под действием центробежной силы приняла сплюснутую форму, как будто она является жидкой. В то же время по отношению к кратковременным силам она ведет себя как твердое тело с упругостью, превышающей упругость стали. Это проявляется, например, при распространении волн землетрясений.

Благодаря податливости земных недр в них происходят медленные перемещения веществ под действием силы тяжести. Более тяжелые вещества опускаются вниз, а более легкие — вверх. Эти перемещения столь медленны, что, хотя они и длятся миллиарды лет, создалась лишь небольшая концентрация более тяжелых веществ, прилегающих к центру Земли. Процесс расслоения глубоких недр Земли, можно сказать, только еще начался и происходит до сих пор.

Особое место в Солнечной системе занимает Земля - единственная планета, на которой в течение миллиардов лет развиваются раз­личные формы жизни.

Во все времена люди хотели знать, откуда и каким образом произошел мир, в котором мы живем. Когда в культуре господствовали мифологические представления, происхождение мира объяснялось, как, скажем, в «Ведах» распадом первочеловека Пуруши. То, что это была общая мифологическая схема, подтверждается и русскими апокрифами, например, «Голубиной книгой». Победа христианства утвердила религиозные представления о сотворении Богом мира из ничего.

С появлением науки в ее современном понимании на смену мифологическим и религиозным приходят научные представления о происхождении мира. Наука отличается от мифологии тем, что стремится не к объяснению мира в целом, а к формулированию законов развития природы, допускающих эмпирическую проверку. Разум и опора на чувственную реальность имеют в науке большее значение, чем вера. Наука – это, в определенной степени, синтез философии и религии, представляющее собой теоретическое освоение действительности.

2. Происхождение Земли.

Мы живем во Вселенной, а наша планета Земля является ее мельчайшим звеном. Поэтому, история возникновения Земли тесно связана с историей возникновения Вселенной. Кстати, а как она возникла? Какие силы повлияли на процесс становления Вселенной и, соответственно, нашей планеты? В наше время существует множество различных теорий и гипотез относительно этой проблемы. Величайшие умы человечества дают свои взгляды по этому поводу.

Значение термина Вселенная в естествознании более узкое и приобрело специфически научное звучание. Вселенная – место вселения человека, доступное эмпирическому наблюдению и проверяемое современными научными методами. Вселенную в целом изучает наука, называемая космологией, то есть наукой о космосе. Слово это не случайно. Хотя сейчас космосом называют все находящееся за пределами атмосферы Земли, не так было в Древней Греции, где космос принимался как «порядок», «гармония», в противоположность «хаосу» - «беспорядку». Таким образом, космология, в основе своей, как и подобает науке, открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого.

Сейчас происхождение Вселенной построено на двух моделях:

а) Модель расширяющейся Вселенной. Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения:

1) свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность);

2) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, - релятивистская.

Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:

1) принципом относительности, гласящим, что во всех инерциональных системах все законы сохраняются вне зависимости от того, с какими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга;

2) экспериментально подтвержденным постоянством скорости света.

Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», то есть линии спектра сдвигаются в сторону более длинных красных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, то есть о расширении Мегагалактики – видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами порядка нескольких миллиардов парсек на протяжении, по меньшей мере, нескольких миллиардов лет. В то же время кривизна пространства не может быть измерена, оставаясь теоретической гипотезой.

б) Модель Большого Взрыва. Наблюдаемая нами Вселенная, по данным современной науки, возникла в результате Большого взрыва около 15-20 млрд. лет назад. Представление о Большом Взрыве является составной частью модели расширяющейся Вселенной.

Все вещество Вселенной в начальном состоянии находилось в сингулярной точке: бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц. Затем последовал взрыв. «Вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного центра и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы», - писал в своей работе С. Вейнберг.

Что же было после Большого взрыва? Образовался сгусток плазмы – состояния, в котором находятся элементарные частицы – нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны. Через 0,01 сек после начала Большого Взрыва во Вселенной появилась смесь легких ядер. Так появились не только материя и многие химические элементы, но и пространство и время.

Данные модели помогают выдвинуть гипотезы о происхождении Земли:

1. Французский ученый Жорж Бюффон (1707-1788) предпо­ложил, что земной шар возник в результате катастрофы. В очень отдаленное время какое-то небесное тело (Бюффон счи­тал, что это была комета) столкнулось с Солнцем. При столк­новении возникло множество «брызг». Наиболее крупные из них, постепенно остывая, дали начало планетам.

2. По-другому объяснял возможность образования небесных тел немецкий ученый Иммануил Кант (1724-1804). Он предполо­жил, что Солнечная система произошла из гигантского холод­ного пылевого облака. Частицы этого облака находились постоянном беспорядочном движении, взаимно притягивали друг друга, сталкивались, слипались, образуя сгущения, которые ста­ли расти и со временем дали начало Солнцу и планетам.

3. Пьер Лаплас (1749-1827), французский астроном и матема­тик, предложил свою гипотезу, объясняющую образование и развитие Солнечной системы. По его мнению, Солнце и пла­неты возникли из вращающегося раскаленного газового обла­ка. Постепенно остывая7ш5о сжималось, образуя многочис­ленные кольца, которые, уплотняясь, создали планеты, а центральный сгусток превратился в Солнце.

В начале нашего столетия английский ученый Джеймс Джине (1877-1946) выдвинул гипотезу, которая так объясняла образование планетной системы: когда-то вблизи Солнца про­летала другая звезда, которая своим тяготением вырвала из него часть вещества. Сгустившись, оно дало начало планетам.

4. Наш соотечественник, известный ученый Отто Юльевич Шмидт (1891-1956) в 1944 г. предложил свою гипотезу обра­зования планет. Он полагал, что миллиарды лет назад Солнце было окружено гигантским облаком, которое состояло из час­тичек холодной пыли и замерзшего газа. Все они обращались вокруг Солнца. Находясь в постоянном движении, сталкива­ясь, взаимно притягивая друг друга, они как бы слипались, образуя сгустки. Постепенно газово-пылевое облако сплющива­лось, а сгустки стали двигаться по круговым орбитам. Со вре­менем из этих сгустков и образовались планеты нашей Сол­нечной системы.

Нетрудно заметить, что гипотезы Канта, Лапласа, Шмидта во многом близки. Многие мысли этих ученых легли в основу современного представления о происхождении Земли и всей Солнечной системы.

Сегодня учёные предпологают, что

3. Развитие Земли.

Древнейшая Земля весьма мало напоминала планету, на которой мы сейчас живем. Её атмосфера состояла из водяных паров, углекислого газа и, по одним, - из азота, по другим – из метана и аммиака. Кислорода в воздухе безжизненной планеты не было, в атмосфере древней Земли гремели грозы, её пронизывало жёсткое ультрафиолетовое излучение Солнца, на планете извергались вулканы. Исследования показывают, что полюса на Земле менялись, и когда-то Антарктида была вечнозеленой. Вечная мерзлота образовалась 100 тыс. лет назад после великого оледенения.

В XIX веке в геологии сформировались две концепции развития Земли:

1) посредством скачков («теория катастроф» Жоржа Кювье);

2) посредством небольших, но постоянных изменений в одном и том же направлении на протяжении миллионов лет, которые, суммируясь, приводили к огромным результатам («принцип униформизма» Чарльза Лайелля).

Успехи физики XX века способствовали существенному продвижению в познании истории Земли. В 1908 году ирландский ученый Д. Джоли сделал сенсационный доклад о геологическом значении радиоактивности: количество тепла, испущенного радиоактивными элементами, вполне достаточно, чтобы объяснить существование расплавленной магмы и извержение вулканов, а также смещение континентов и горообразование. С его точки зрения, элемент материи – атом – имеет строго определенную длительность существования и неизбежно распадается. В следующем 1909 году русский ученый В. И. Вернадский основывает геохимию – науку об истории атомов Земли и ее химико-физической эволюции.

На этот счет существуют две, наиболее распространенные точки зрения. Ранняя из них полагала, что первоначальная Земля, сформировавшаяся сразу после аккреции из планетезималей, состоящих из никелистого железа и силикатов, была однородна и только потом подверглась дифференциации на железо-никелевое ядро и силикатную мантию. Эта гипотеза получила название гомогенной аккреции. Более поздняя гипотеза гетерогенной аккреции заключается в том, что сначала аккумулировались наиболее тугоплавкие планетезимали, состоящие из железа и никеля и только потом в аккрецию вступило силикатное вещество, слагающее сейчас мантию Земли от уровня 2900 км. Эта точка зрения сейчас, пожалуй, наиболее популярна, хотя и здесь возникает вопрос о выделении внешнего ядра, имеющего свойства жидкости. Возникло ли оно после формирования твердого внутреннего ядра или внешнее и внутреннее ядра выделялись в процессе дифференциации? Но этот вопрос однозначного ответа не существует, но предположение отдается второму варианту.

Процесс аккреции, столкновение планетезималей размером до 1000 км, сопровождался большим выделением энергии, с сильным прогревом формирующейся планеты, ее дегазацией, т.е. выделением летучих компонентов, содержащихся в падавших планетезималях. Большая часть летучих веществ при этом безвозвратно терялась в межпланетном пространстве, о чем свидетельствует сравнение составов летучих в метеоритах и породах Земли. Процесс становления нашей планеты по современным данным длился около 500 млн. лет и проходил в 3 фазы аккреции. В течение первой и главной фазы Земля сформировалась по радиусу на 93-95% и эта фаза закончилась к рубежу 4,4 – 4,5 млрд. лет, т.е. длилась около 100 млн. лет.

Вторая фаза, ознаменовавшаяся завершением роста, длилась тоже около 200 млн. лет. Наконец, третья фаза, продолжительностью до 400 млн. лет (3,8-3,9 млрд. лет окончание) сопровождалась мощнейшей метеоритной бомбардировкой, такой же, как и на Луне. Вопрос о температуре первичной Земли имеет для геологов принципиальное значение. Даже в начале ХХ века ученые говорили о первичной «огненно-жидкой» Земле. Однако этот взгляд полностью противоречил современной геологической жизни планеты. Если бы Земля изначально была расплавленной, она давно бы превратилась в мертвую планету.

Следовательно, предпочтение нужно отдать не очень холодной, но и не расплавленной ранней Земле. Факторов нагрева планеты было много. Это и гравитационная энергия; и соударение планетезималей; и падение очень крупных метеоритов, при ударе которых повышенная температура распространялась до глубин 1-2 тыс.км. Если же, все-таки, температура превышала точку плавления вещества, то наступала дифференциация – более тяжелые элементы, например, железо, никель, опускались, а легкие, наоборот, всплывали.

Но главный вклад в увеличение тепла должен был играть распад радиоактивных элементов - плутония, тория, калия, алюминия, йода. Еще один источник тепла – это твердые приливы, связанные с близким расположением спутника Земли - Луны. Все эти факторы, действуя вместе, могли повысить температуру до точки плавления пород, например, в мантии она могла достигнуть +1500 ОС. Но давление на больших глубинах препятствовало плавлению, особенно во внутреннем ядре. Процесс внутренней дифференциации нашей планеты происходил всю ее геологическую историю, продолжается он и сейчас. Однако, уже 3,5-3,7 млрд.лет назад, при возрасте Земли в 4,6 млрд.лет, у Земли было твердое внутреннее ядро, жидкое внешнее и твердая мантия, т.е. она уже была дифференцирована в современном виде. Об этом говорит намагниченность таких древних горных пород, а, как известно, магнитное поле обусловлено взаимодействием жидкого внешнего ядра и твердого внешнего. Процесс расслоения, дифференциации недр происходил на всех планетах, но на Земле он происходит и сейчас, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии.

В 1915 году немецкий геофизик А. Вегенер предположил, исходя из очертаний континентов, что в карбоне (геологический период) существовал единый массив суши, названный им Пангеей (греч. «вся земля»). Пангея раскололась на Лавразию и Гондвану. 135 млн. лет назад Африка отделилась от Южной Америки, а 85 млн. лет назад Северная Америка – от Европы; 40 млн. лет назад Индийский материк столкнулся с Азией и появились Тибет и Гималаи.

Решающим аргументом в пользу принятия данной концепции А. Вегенера стало эмпирическое обнаружение в конце 50-х годов расширения дна океанов, что послужило отправной точкой создания тектоники литосферных плит. В настоящее время считается, что континенты расходятся под влиянием глубинных конвективных течений, направленных вверх и в стороны и тянущих за собой плиты, на которых плавают континенты. Эту теорию подтверждают и биологические данные о распространении животных на нашей планете. Теория дрейфа континентов, основанная на тектонике литосферных плит, ныне общепринята в геологии.

4. Глобальная тектоника.

Много лет назад отец-геолог подвел своего маленького сына к карте мира и спросил, что будет, если береговую линию Америки придвинуть к побережью Европы и Африки? Мальчик не поленился и, вырезав соответствующие части из физико-географического атласа, с удивлением обнаружил, что западное побережье Атлантики совпало с восточным в пределах, так сказать, ошибки эксперимента.

Эта история не прошла для мальчика бесследно, он стал геологом и поклонником Альфреда Вегенера, отставного офицера германской армии, а также метеоролога, полярника, и геолога, который в 1915 году создал концепцию дрейфа континентов.

Свою лепту в возрождение концепции дрейфа внесли и высокие технологии: именно компьютерное моделирование в середине 1960-х годов показало хорошее совпадение границ континентальных масс не только для Циркум-Атлантики, но и для ряда остальных материков - Восточной Африки и Индостана, Австралии и Антарктиды. В результате в конце 60-х появилась концепция тектоники плит, или новой глобальной тектоники.

Предложенная сначала чисто умозрительно для решения частной задачи -распределения землетрясений различной глубинности на поверхности Земли, - она сомкнулась с представлениями о дрейфе континентов и мгновенно получила всеобщее признание. К 1980 году - столетию со дня рождения Альфреда Вегенера – стало принято говорить о формировании новой парадигмы в геологии. И даже о научной революции, сопоставляемой с революцией в физике начала XX века…

Согласно этой концепции, земная кора разбита на несколько огромных литосферных плит, которые постоянно двигаются и продуцируют землетрясения. Первоначально было выделено несколько литосферных плит: Евразийская, Африканская, Северо – и Южноамериканская, Австралийская, Антарктическая, Тихоокеанская. Все они, кроме Тихоокеанской, чисто океанической, включают в себя части как с континентальной, так и океанической корой. И дрейф континентов в рамках этой концепции - не более чем их пассивное перемещение вместе с литосферными плитами.

В основе глобальной тектоники лежит представление о литосферных плитах, фрагментах земной поверхности, рассматриваемых, как абсолютно жесткие тела, перемещающиеся словно по воздушной подушке по слою разуплотненной мантии - астеносфере, со скоростью от 1-2 до 10-12 см в год. В большинстве своем они включают как континентальные массы с корой, условно называемой «гранитной», так и участки с корой океанической, условно называемой «базальтовой» и образованной породами с низким содержанием кремнезема.

Учёным совершенно не ясно, куда движутся материки и некоторые из них не согласны с тем, что движится земная кора, а если движутся, то за счёт действия каких сил и источников энергии. Широко распространённое предположение о том, что причиной движения земной коры служит тепловая конвекция, по сути, неубедительно, ибо оказалось, что такого рода предположения идут вразрез с основными положениями многих физических законов, экспериментальных данных и многочисленных наблюдений, включая данные космических исследований о тектонике и строении других планет. Реальных схем тепловой конвекции, не противоречащих законам физики, и единого логически обоснованного механизма движения вещества, одинаково приемлемых для условий недр звёзд, планет и их спутников, до сих пор не найдено.

В срединно-океанических хребтах образуется новая разогретая океаническая кора, которая, остывая, снова погружается в недра мантии и рассеивает тепловую энергию, идущую на перемещение плит земной коры.

Гигантские геологические процессы, такие как вздымание горных хребтов, мощные землетрясения, образование глубоководных впадин, извержение вулканов, - все они, в конце концов, порождаются движением плит земной коры, при котором происходит постепенное охлаждение мантии нашей планеты.

Земная суша образуется твердыми горными породами, зачастую покрытыми слоем почвы и растительностью. Но откуда эти горные породы берутся? Новые горные породы формируются из вещества, рождающегося глубоко в недрах Земли. В нижних слоях земной коры температура намного выше, чем па поверхности, а составляющие их горные породы находятся под огромным давлением. Под воздействием жара и давления горные породы прогибаются и размягчаются, а то и вовсе плавятся. Как только в земной коре образуется слабое место, расплавленные горные породы - их называют магмой - прорываются на поверхность Земли. Магма вытекает из жерлов вулканов в виде лавы и распространяется на большой площади. Застывая, лава превращается в твердую горную породу.

В одних случаях рождение горных пород сопровождается грандиозными катаклизмами, в других проходит тихо и незаметно. Существует множество разновидностей магмы, и из них образуются различные типы горных пород. К примеру, базальтовая магма очень текуча, легко выходит на поверхность, растекается широкими потоками и быстро застывает. Иногда она вырывается из жерла вулкана ярким "огненным фонтаном" - такое происходит, когда земная кора не выдерживает ее давления.

Другие виды магмы гораздо гуще: их густота, или консистенция, больше похожа на черную патоку. Содержащиеся в такой магме газы с большим трудом пробиваются на поверхность сквозь ее плотную массу. Вспомните, как легко пузырьки воздуха вырываются из кипящей воды и насколько медленнее это происходит, когда вы нагреваете что-нибудь более густое, к примеру кисель. Когда более плотная магма поднимается ближе к поверхности, давление на нее уменьшается. Растворенные в пей газы стремятся расшириться, но не могут. Когда же магма наконец вырывается наружу, газы расширяются столь стремительно, что происходит грандиозный взрыв. Лава, обломки горных пород и пепел разлетаются во все стороны, как снаряды, выпущенные из пушки. Подобное извержение случилось в 1902 г. на о-ве Мартиника в Карибском море. Катастрофическое извержение вулкана Моптапь-Пеле полностью разрушило порт Сеп-Пьер. Погибло около 30 000 человек

Геология дала человечеству возможность использования геологических ресурсов для развития всех отраслей техники и технологии. Вместе с тем, интенсивная техногенная деятельность привела к резкому ухудшению экологической мировой обстановки, настолько сильной и быстрой, что нередко под вопрос ставится существование человечества. Мы потребляем намного больше, чем природа в состоянии регенерировать. Поэтому проблема устойчивого развития в наши дни является подлинно глобальной, мировой проблемой, касающейся всех государств.

Несмотря на увеличение научно-технического потенциала человечества, уровень нашего незнания о планете Земля все еще очень велик. И по мере прогресса в наших знаниях о ней, количество вопросов, остающихся нерешенными, не уменьшается. Мы стали понимать, что на процессы, происходящие на Земле, оказывают влияние и Луна, и Солнце, и другие планеты, все связано воедино, и даже жизнь, возникновение которой составляет одну из кардинальных научных проблем, возможно, занесена к нам из космического пространства. Геологи пока бессильны предсказывать землетрясения, хотя, предугадать извержения вулканов сейчас уже можно с большой долей вероятности. Множество геологических процессов еще плохо поддаются объяснению и тем более прогнозированию. Поэтому интеллектуальная эволюция человечества во многом связана с успехами геологической науки, которая когда-нибудь позволит человеку решить волнующие его вопросы о происхождении Вселенной, происхождении жизни и разума.

6. Список использованной литературы

1. Горелов А. А. Концепции современного естествознания. - М.: Центр, 1997.

2. Лавриненко В. Н., Ратников В. П. – М.: Культура и спорт, 1997.

3. Найдыш В. М. Концепции современного естествознания: Учеб. пособие. – М.: Гардарики, 1999.

4. Левитан Е. П. Астрономия: Учебник для 11 кл. общеобразовательной школы. – М.: Просвещение, 1994.

5. Сурдин В. Г. Динамика звездных систем. – М.: Изд-во Московского центра непрерывного образования, 2001.

6. Новиков И. Д. Эволюция Вселенной. – М., 1990.

7. Карапенков С. Х. Концепции современного естествознания. – М.: Академический проспект, 2003.

ddvor.ru - Одиночество и расставания. Популярные вопросы. Эмоции. Чувства. Личные отношения