Понятие неравенства, связанные определения. Сложение и умножение неравенств. Строгие и нестрогие неравенства Методическая разработка учителя Поляковой Е. А

Неравенство – обратная сторона равенства. Материал данной статьи дает определение неравенства и начальную информацию о нем в разрезе математики.

Понятие неравенства, как и понятие равенства, связывается с моментом сравнения двух объектов. В то время как равенство означает «одинаковы», то неравенство, напротив, свидетельствует о различиях объектов, которые сравниваются. К примеру, и - одинаковые объекты или равные. и - объекты, отличающиеся друг от друга или неравные.

Неравенство объектов определяется по смысловой нагрузке такими словами, как выше – ниже (неравенство по признаку высоты); толще – тоньше (неравенство по признаку толщины); длиннее – короче (неравенство по признаку длины) и так далее.

Возможно рассуждать как о равенстве-неравенстве объектов в целом, так и о сравнении их отдельных характеристик. Допустим, заданы два объекта: и . Без сомнений, эти объекты не являются одинаковыми, т.е. в целом они не равны: по признаку размера и цвета. Но, в то же время, мы можем утверждать, что равны их формы – оба объекта являются кругами.

В контексте математики смысловая нагрузка неравенства сохраняется. Однако, в этом случае речь идет о неравенстве математических объектов: чисел, значений выражений, значений величин (длина, площадь и т.д.), векторов, фигур и т.п.

Не равно, больше, меньше

В зависимости от целей поставленной задачи ценным можем являться уже просто факт выяснения неравенства объектов, но обычно вслед за установлением факта неравенства происходит выяснение того, какая все же величина больше, а какая – меньше.

Значение слов «больше» и «меньше» нам интуитивно знакомо с самого начала нашей жизни. Очевидным является навык определять превосходство объекта по размеру, количеству и т.д. Но в конечном счете любое сравнение приводит нас к сравнению чисел, которые определяют некоторые характеристики сравниваемых объектов. По сути, мы выясняем, какое число больше, а какое – меньше.

Простой пример:

Пример 1

Утром температура воздуха составила 10 градусов по Цельсию; в два часа дня этот показатель составил 15 градусов. На основе сравнения натуральных чисел мы можем утверждать, что значение температуры утром было меньше, чем ее значение в два часа дня (или в два часа дня температура увеличилась, стала больше, чем была температура утром).

Запись неравенств с помощью знаков

Существуют общепринятые обозначения для записи неравенств:

Определение 1

  • знак «не равно», представляющий собой перечеркнутый знак «равно»: ≠ . Этот знак располагается между неравными объектами. Например: 5 ≠ 10 пять не равно десяти;
  • знак «больше»: > и знак «меньше»: < . Первый записывается между большим и меньшим объектами; второй между меньшим и большим. Например, запись о сравнении отрезков вида | A B | > | C D | говорит о том, что отрезок A B больше отрезка С D ;
  • знак «больше или равно»: ≥ и знак «меньше или равно»: ≤ .

Подробнее их смысл разберем ниже. Дадим определение неравенств по виду их записи.

Определение 2

Неравенства – алгебраические выражения, имеющие смысл и записанные при помощи знаков ≠ , > , < , ≤ , ≥ .

Строгие и нестрогие неравенства

Определение 3

Знаки строгих неравенств – это знаки «больше» и «меньше»: > и < Неравенства, составленные с их помощью – строгие неравенства.

Знаки нестрогих неравенств – это знаки «больше или равно» и «меньше или равно»: ≥ и ≤ . Неравенства, составленные с их помощью – нестрогие неравенства.

Как применяются строгие неравенства, мы разобрали выше. Зачем же используются нестрогие неравенства? В практике такими неравенствами возможно задавать случаи, описываемые словами «не больше» и «не меньше». Фраза «не больше» означает меньше или столько же – этому уровню сравнения соответствует знак «меньше или равно» ≤ . В свою очередь, «не меньше» значит – столько же или больше, а это знак «больше или равно» ≥ . Таким образом, нестрогие неравенства, в отличие от строгих, дают возможность равенства объектов.

Верные и неверные неравенства

Определение 4

Верное неравенство – то неравенство, которое соответствует указанному выше смыслу неравенства. В ином случае оно является неверным .

Приведем простые примеры для наглядности:

Пример 2

Неравенство 5 ≠ 5 является неверным, поскольку на самом деле числа 5 и 5 равны.

Или такое сравнение:

Пример 3

Допустим S – площадь некой фигуры, в этом случае S < - 4 является верным неравенством, поскольку площадь всегда выражена неотрицательным числом.

Аналогичными по смыслу термину «верное неравенство» являются фразы «справедливое неравенство», «имеет место неравенство» и т.д.

Свойства неравенств

Опишем свойства неравенств. Очевидный факт, что объект никак не может быть неравным самому себе, и это есть первое свойство неравенства. Второе свойство звучит так: если первый объект не равен второму, то и второй не равен первому.

Опишем свойства, соответствующие знакам «больше» или «меньше»:

Определение 5

  • антирефлективность . Это свойство можно выразить так: для любого объекта k неравенства k > k и k < k неверны;
  • антисимметричность . Данное свойство говорит о том, что, если первый объект больше или меньше второго, то второй объект, соответственно, меньше или больше первого. Запишем: если m > n , то n < m . Или: если m < n , то n > m ;
  • транзитивность . В буквенной записи указанное свойство будет выглядеть так: если задано, что a < b и b < с, то a < c . Наоборот: a > b и b > с, а значит a > c . Данное свойство интуитивно понятно и естественно: если первый объект больше второго, а второй – больше третьего, то становится ясно, что первый объект тем более больше третьего.

Знакам нестрогих неравенств также присущи некоторые свойства:

Определение 6

  • рефлексивность : a ≥ a и a ≤ a (сюда же включается случай, когда a = a);
  • антисимметричность : если a ≤ b , то b ≥ a . Если же a ≥ b , то b ≤ a ;
  • транзитивность : если a ≤ b и b ≤ c , то очевидно, что a ≤ c . И также: если а ≥ b , а b ≥ с, то а ≥ с.

Двойные, тройные и т.п. неравенства

Свойство транзитивности дает возможность записывать двойные, тройные и так далее неравенства, по сути являющиеся цепочками неравенств. К примеру: двойное неравенство – e > f > g или тройное неравенство k 1 ≤ k 2 ≤ k 3 ≤ k 4 .

Отметим, что удобным бывает записывать неравенство как цепочки, включающие в себя различные знаки: равно, не равно и знаки строгих и нестрогих неравенств. Например, x = 2 < y ≤ z < 15 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сегодня мы узнаем, как использовать метод интервалов для решения нестрогих неравенств. Во многих учебниках нестрогие неравенства определяются следующим образом:

Нестрогое неравенство - это неравенство вида f (x ) ≥ 0 или f (x ) ≤ 0, которое равносильно совокупности строгого неравенства и уравнения:

В переводе на русский язык это значит, что нестрогое неравенство f (x ) ≥ 0 - это объединение классического уравнения f (x ) = 0 и строгого неравенства f (x ) > 0. Другими словами, теперь нас интересуют не только положительные и отрицательные области на прямой, но и точки, где функция равна нулю .

Отрезки и интервалы: в чем разница?

Прежде чем решать нестрогие неравенства, давайте вспомним, чем интервал отличается от отрезка:

  • Интервал - это часть прямой, ограниченная двумя точками. Но эти точки не принадлежат интервалу. Интервал обозначается круглыми скобками: (1; 5), (−7; 3), (11; 25) и т.д.;
  • Отрезок - это тоже часть прямой, ограниченная двумя точками. Однако эти точки тоже являются частью отрезка. Отрезки обозначаются квадратными скобками: , [−7; 3], и т.д.

Чтобы не путать интервалы с отрезками, для них разработаны специальные обозначения: интервал всегда обозначается выколотыми точками, а отрезок - закрашенными. Например:

На этом рисунке отмечен отрезок и интервал (9; 11). Обратите внимание: концы отрезка отмечены закрашенными точками, а сам отрезок обозначается квадратными скобками. С интервалом все иначе: его концы выколоты, а скобки - круглые.

Метод интервалов для нестрогих неравенств

К чему была вся эта лирика про отрезки и интервалы? Очень просто: для решения нестрогих неравенств все интервалы заменяются отрезками - и получится ответ. По существу, мы просто добавляем к ответу, полученному методом интервалов, границы этих самых интервалов. Сравните два неравенства:

Задача. Решите строгое неравенство:

(x − 5)(x + 3) > 0

Решаем методом интервалов. Приравниваем левую часть неравенства к нулю:

(x − 5)(x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;

Справа стоит знак плюс. В этом легко в этом убедиться, подставив миллиард в функцию:

f (x ) = (x − 5)(x + 3)

Осталось выписать ответ. Поскольку нас интересуют положительные интервалы, имеем:

x ∈ (−∞; −3) ∪ (5; +∞)

Задача. Решите нестрогое неравенство:

(x − 5)(x + 3) ≥ 0

Начало такое же, как и для строгих неравенств: работает метод интервалов. Приравниваем левую часть неравенства к нулю:

(x − 5)(x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;

Отмечаем полученные корни на координатной оси:

В предыдущей задаче мы уже выяснили, что справа стоит знак плюс. Напомню, в этом легко убедиться, подставив миллиард в функцию:

f (x ) = (x − 5)(x + 3)

Осталось записать ответ. Поскольку неравенство нестрогое, а нас интересуют положительные значения, имеем:

x ∈ (−∞; −3] ∪ ∪ ∪ , а (−∞; −3] ∪

Задача. Решите неравенство:

x (12 − 2x )(3x + 9) ≥ 0

x (12 − 2x )(3x + 9) = 0;
x = 0;
12 − 2x = 0 ⇒ 2x = 12 ⇒ x = 6;
3x + 9 = 0 ⇒ 3x = −9 ⇒ x = −3.

x ≥ 6 ⇒ f (x ) = x (12 − 2x )(3x + 9) → (+) · (−) · (+) = (−) < 0;
x ∈ (−∞ −3] ∪ .

«Числовые неравенства» - Если a>b и m<0, то amb, то а в степени n > b в степени n, где n - любое натуральное число. Знание свойств числовых неравенств будет полезно и для исследования функций. Если a>b и c>d, то a+c>b+d. Свойство 5. Свойство 1.

«Решение показательных неравенств» - Структура урока. Когда показательное неравенство не имеет решений? Альберт Эйнштейн. 1 Область определения функции. 3. Промежутки сравнения значений функции с единицей. Убывает на всей области определения, 8. При любых действительных значениях х и у; a>0, a?1; b>0, b?1. План лекции. Как решаются неравенства, сводящиеся к квадратным?

«Решение дробно-рациональных неравенств» - Решите неравенство. Знаменатель. Решение. Выколотые и невыколотые точки. Назовите числа. Числитель и знаменатель. Назовите выколотые и невыколотые точки. Точки. Найти «нули». Луч. Домножать на знаменатель, содержащий неизвестное. Решение дробно-рациональных неравенств. Определить знак. Решите. Выражение.

«Решение систем неравенств» - Закрепление. Записать неравенства, множеством решения которых служат промежутки. Решение систем неравенств. Повторение. Отрезки. Полуинтервалы. Чтобы решить систему линейных неравенств, достаточно решить каждое из входящих в неё неравенство и найти пересечение множеств их решений. Интервалы. Математический диктант.

«Показательные неравенства» - Что нужно учесть при решении показательных неравенств? Решение простейших показательных неравенств. Что нужно учесть при решении простейших показательных неравенств? Решение неравенства. Решение простейших показательных неравенств. Решите неравенство. Знак неравенства. Неравенство, содержащее неизвестную в показателе степени, называется показательным неравенством.

«Числовые неравенства и числовые промежутки» - Самостоятельная работа. Числовой луч. Неравенство. Проверка. Числовые промежутки. Понятие числового промежутка. Числовой отрезок. Множество действительных чисел. Полуинтервал. Изобразите промежутки на координатной прямой. Числовой промежуток. Открытый луч. Назовите промежутки. Множество всех чисел. Число.

Всего в теме 38 презентаций

ddvor.ru - Одиночество и расставания. Популярные вопросы. Эмоции. Чувства. Личные отношения