Касательная плоскость к сфере. Касательная плоскость

ОПРЕДЕЛЕНИЕ . Касательной плоскостью к поверхности в точке
называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку.Нормалью называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания.

Покажем, что
направлен по нормали к поверхности
в точке
­.

Рассмотрим кривую , лежащую на поверхности и проходящую через точку
(рис. 15). Пусть она задана параметрическими уравнениями

.

Если
– радиус-вектор точки
, движущейся при изменениивдоль, то, а
– радиус-вектор точки
.

Так как лежит на поверхности, то. Продифференцируем это тождество по:

. (6.6)

По определению
, а. Поэтому (6.6) означает, что скалярное произведение
во всех точках кривой.

Равенство нулю скалярного произведения векторов – необходимое и достаточное условие их перпендикулярности. Значит, в точке

. Но вектор
– вектор скорости – направлен по касательной к траектории точки

, то есть по касательной к кривой(рис. 15). Так каквыбрана произвольно, то
перпендикулярен всевозможным касательным, проведенным к линиям, лежащим на
и проходящим через точку
. А это по определению означает, что
перпендикулярен касательной плоскости, то есть является ее нормалью.

Отсюда уравнение касательной плоскости к данной поверхности имеет вид (см. гл. 3):

Уравнение нормали (см. гл. 3):

. (6.8)

В частности, если поверхность задана явным уравнением
, получим:– уравнение касательной

плоскости, и
– уравнение нормали.

ПРИМЕР . Написать уравнения касательной плоскости и нормали к сфере
в точке
.

Очевидно

Уравнение касательной плоскости (6.7):

Уравнения нормали (6.8):

.

Заметим, что эта прямая проходит через начало координат, то есть центр сферы.

ПРИМЕР . Написать уравнение касательной плоскости к эллиптическому параболоиду
в точке
.

Эта поверхность задана явным уравнением и
.

Поэтому уравнение касательной плоскости в данной точке имеет вид: или.

Экстремумы функции двух переменных

Пусть функция
определена во всех точках некоторой области
.

ОПРЕДЕЛЕНИЕ . Точка
называется точкой максимума (минимума) функции
, если существует её окрестность
, всюду в пределах которой.

Из определения следует, что если
– точка максимума, то

; если
– точка минимума, то

ТЕОРЕМА (необходимое условие экстремума дифференцируемой функции двух переменных). Пусть функция
имеет в точке
экстремум. Если в этой точке существуют производные первого порядка, то

ДОКАЗАТЕЛЬСТВО . Зафиксируем значение
. Тогда
– функция одной переменной. Она имеет экстремум при
и по необходимому условию экстремума дифференцируемой функции одной переменной (см. гл. 5)
.

Аналогично, зафиксировав значение
, получим, что
.

Что и требовалось доказать.

ОПРЕДЕЛЕНИЕ . Стационарной точкой функции
называется точка
, в которой обе частные производные первого порядка равны нулю:

.

ЗАМЕЧАНИЕ 1 . Сформулированное необходимое условие не является достаточным условием экстремума.

Пусть
. Значит,
– стационарная точка этой функции. Рассмотрим произвольную- окрестность начала координат.

В пределах этой окрестности имеет, очевидно, разные знаки (рис. 16). А это означает, что точка
точкой экстремума по определению не является.

Таким образом, не всякая стационарная точка – точка экстремума .

ЗАМЕЧАНИЕ 2 . Непрерывная функция может иметь экстремум, но не иметь стационарной точки.

Рассмотрим функцию
. Её графиком является верхняя
половина конуса, и, очевидно,
– точка минимума (рис. 17).

ОПРЕДЕЛЕНИЕ . Точки, в которых частные производные первого порядка функции
равны нулю или не существуют, называются еекритическими точками.

ТЕОРЕМА (достаточное условие экстремума функции
). Пусть функция
имеет частные производные второго порядка в некоторой окрестностистационарной точки
. Пусть, кроме того,

.

Тогда, если

1)
, то
– точка экстремума, именно: точка максимума, если
, или точка минимума, если
;

2)
, то экстремума в точке
нет;

3)
, то требуются дополнительные исследования для выяснения характера точки
.

(Без доказательства).

ПРИМЕР . Исследовать на экстремум функцию
.

Найдем стационарные точки:
. Стационарных точек нет, значит, функция не имеет экстремума.

ПРИМЕР . Исследовать на экстремум функцию .

Чтобы найти стационарные точки, надо решить систему уравнений:

То есть данная функция имеет четыре стационарные точки.

Проверим достаточное условие экстремума для каждой из них:

.

Так как
, то в точках
экстремума нет.

и
, значит,
– точка минимума и
;
и
, значит,
– точка максимума и
.

Поверхность определяется как множество точек , координаты которых удовлетворяют определённому виду уравнений:

F (x , y , z) = 0 (1) {\displaystyle F(x,\,y,\,z)=0\qquad (1)}

Если функция F (x , y , z) {\displaystyle F(x,\,y,\,z)} непрерывна в некоторой точке и имеет в ней непрерывные частные производные, по крайней мере одна из которых не обращается в нуль, то в окрестности этой точки поверхность, заданная уравнением (1), будет правильной поверхностью .

Помимо указанного выше неявного способа задания , поверхность может быть определена явно , если одну из переменных, например, z, можно выразить через остальные:

z = f (x , y) (1 ′) {\displaystyle z=f(x,y)\qquad (1")}

Более строго, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение.

Пусть на плоскости с прямоугольной системой координат u и v задан квадрат , координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < v < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = x(u, v), у = y(u, v), z = z(u, v) (параметрическое задание поверхности). При этом от функций x(u, v), y(u, v) и z(u, v) требуется, чтобы они были непрерывными и чтобы для различных точек (u, v) и (u", v") были различными соответствующие точки (x, у, z) и (x", у", z").

Примером простой поверхности является полусфера. Вся же сфера не является простой поверхностью . Это вызывает необходимость дальнейшего обобщения понятия поверхности.

Подмножество пространства, у каждой точки которого есть окрестность, являющаяся простой поверхностью , называется правильной поверхностью .

Поверхность в дифференциальной геометрии

Геликоид

Катеноид

Метрика не определяет однозначно форму поверхности. Например, метрики геликоида и катеноида , параметризованных соответствующим образом, совпадают, то есть между их областями существует соответствие, сохраняющее все длины (изометрия). Свойства, сохраняющиеся при изометрических преобразованиях, называются внутренней геометрией поверхности. Внутренняя геометрия не зависит от положения поверхности в пространстве и не меняется при её изгибании без растяжения и сжатия (например, при изгибании цилиндра в конус) .

Метрические коэффициенты E , F , G {\displaystyle E,\ F,\ G} определяют не только длины всех кривых, но и вообще результаты всех измерений внутри поверхности (углы, площади, кривизна и др.). Поэтому всё, что зависит только от метрики, относится к внутренней геометрии.

Нормаль и нормальное сечение

Векторы нормали в точках поверхности

Одной из основных характеристик поверхности является её нормаль - единичный вектор, перпендикулярный касательной плоскости в заданной точке:

m = [ r u ′ , r v ′ ] | [ r u ′ , r v ′ ] | {\displaystyle \mathbf {m} ={\frac {[\mathbf {r"_{u}} ,\mathbf {r"_{v}} ]}{|[\mathbf {r"_{u}} ,\mathbf {r"_{v}} ]|}}} .

Знак нормали зависит от выбора координат.

Сечение поверхности плоскостью, содержащей нормаль поверхности в заданной точке, образует некоторую кривую, которая называется нормальным сечением поверхности. Главная нормаль для нормального сечения совпадает с нормалью к поверхности (с точностью до знака).

Если же кривая на поверхности не является нормальным сечением, то её главная нормаль образует с нормалью поверхности некоторый угол θ {\displaystyle \theta } . Тогда кривизна k {\displaystyle k} кривой связана с кривизной k n {\displaystyle k_{n}} нормального сечения (с той же касательной) формулой Мёнье :

k n = ± k cos θ {\displaystyle k_{n}=\pm k\,\cos \,\theta }

Координаты орта нормали для разных способов задания поверхности приведены в таблице:

Координаты нормали в точке поверхности
неявное задание (∂ F ∂ x ; ∂ F ∂ y ; ∂ F ∂ z) (∂ F ∂ x) 2 + (∂ F ∂ y) 2 + (∂ F ∂ z) 2 {\displaystyle {\frac {\left({\frac {\partial F}{\partial x}};\,{\frac {\partial F}{\partial y}};\,{\frac {\partial F}{\partial z}}\right)}{\sqrt {\left({\frac {\partial F}{\partial x}}\right)^{2}+\left({\frac {\partial F}{\partial y}}\right)^{2}+\left({\frac {\partial F}{\partial z}}\right)^{2}}}}}
явное задание (− ∂ f ∂ x ; − ∂ f ∂ y ; 1) (∂ f ∂ x) 2 + (∂ f ∂ y) 2 + 1 {\displaystyle {\frac {\left(-{\frac {\partial f}{\partial x}};\,-{\frac {\partial f}{\partial y}};\,1\right)}{\sqrt {\left({\frac {\partial f}{\partial x}}\right)^{2}+\left({\frac {\partial f}{\partial y}}\right)^{2}+1}}}}
параметрическое задание (D (y , z) D (u , v) ; D (z , x) D (u , v) ; D (x , y) D (u , v)) (D (y , z) D (u , v)) 2 + (D (z , x) D (u , v)) 2 + (D (x , y) D (u , v)) 2 {\displaystyle {\frac {\left({\frac {D(y,z)}{D(u,v)}};\,{\frac {D(z,x)}{D(u,v)}};\,{\frac {D(x,y)}{D(u,v)}}\right)}{\sqrt {\left({\frac {D(y,z)}{D(u,v)}}\right)^{2}+\left({\frac {D(z,x)}{D(u,v)}}\right)^{2}+\left({\frac {D(x,y)}{D(u,v)}}\right)^{2}}}}}

Здесь D (y , z) D (u , v) = | y u ′ y v ′ z u ′ z v ′ | , D (z , x) D (u , v) = | z u ′ z v ′ x u ′ x v ′ | , D (x , y) D (u , v) = | x u ′ x v ′ y u ′ y v ′ | {\displaystyle {\frac {D(y,z)}{D(u,v)}}={\begin{vmatrix}y"_{u}&y"_{v}\\z"_{u}&z"_{v}\end{vmatrix}},\quad {\frac {D(z,x)}{D(u,v)}}={\begin{vmatrix}z"_{u}&z"_{v}\\x"_{u}&x"_{v}\end{vmatrix}},\quad {\frac {D(x,y)}{D(u,v)}}={\begin{vmatrix}x"_{u}&x"_{v}\\y"_{u}&y"_{v}\end{vmatrix}}} .

Все производные берутся в точке (x 0 , y 0 , z 0) {\displaystyle (x_{0},y_{0},z_{0})} .

Кривизна

Для разных направлений в заданной точке поверхности получается разная кривизна нормального сечения, которая называется нормальной кривизной ; ей приписывается знак плюс, если главная нормаль кривой идёт в том же направлении, что и нормаль к поверхности, или минус, если направления нормалей противоположны.

Вообще говоря, в каждой точке поверхности существуют два перпендикулярных направления e 1 {\displaystyle e_{1}} и e 2 {\displaystyle e_{2}} , в которых нормальная кривизна принимает минимальное и максимальное значения; эти направления называются главными . Исключение составляет случай, когда нормальная кривизна по всем направлениям одинакова (например, у сферы или на торце эллипсоида вращения), тогда все направления в точке - главные.

Поверхности с отрицательной (слева), нулевой (в центре) и положительной (справа) кривизной.

Нормальные кривизны в главных направлениях называются главными кривизнами ; обозначим их κ 1 {\displaystyle \kappa _{1}} и κ 2 {\displaystyle \kappa _{2}} . Величина:

K = κ 1 κ 2 {\displaystyle K=\kappa _{1}\kappa _{2}}

называется гауссовой кривизной , полной кривизной или просто кривизной поверхности. Встречается также термин скаляр кривизны , который подразумевает результат свёртки тензора кривизны ; при этом скаляр кривизны вдвое больше, чем гауссова кривизна.

Гауссова кривизна может быть вычислена через метрику, и поэтому она является объектом внутренней геометрии поверхностей (отметим, что главные кривизны к внутренней геометрии не относятся). По знаку кривизны можно классифицировать точки поверхности (см. рисунок). Кривизна плоскости равна нулю. Кривизна сферы радиуса R всюду равна 1 R 2 {\displaystyle {\frac {1}{R^{2}}}} . Существует и поверхность постоянной отрицательной кривизны -

Сказка о возникновении шара

Однажды, оставшись один дома, красавец Полукруг долго принаряживался и жеманился перед небольшим в оловянных рамках зеркалом и не мог налюбоваться собою.

«Что людям вздумалось расславлять, будто я хорош?- говорил он. – Лгут люди, я совсем не хорош. Почему девушки провозгласили, что лучшего парня и не было еще никогда и не будет никогда на селе Хатанга?».

Полукруг знал и слышал все, что про него говорили, и был капризным, как красавец. Он мог целый день любоваться собой перед зеркалом, рассматривая себя со всех сторон. И вдруг случилось чудо, когда Полукруг повернулся перед зеркалом вокруг себя, он увидел в зеркале собственное отражение в форме Шара.

Из истории возникновения

Шаром принято называть тело, ограниченное сферой, то есть шар и сфера – это разные геометрические тела. Однако оба слова «шар» и «сфера» происходят от одного и того же греческого слова «сфайра» - мяч. При этом слово «шар» образовалось от перехода согласных сф в ш .

В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почёте. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы.

Сфера всегда широко применялось в различных областях науки и техники.

Определение

  • Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.
  • Тело, ограниченное сферой, называется шаром.

Общие понятия

  • Данная точка называется центром сферы, а данное расстояние – радиусом сферы.
  • Отрезок, соединяющий две точки сферы и проходящий через ее центр, называется диаметром сферы.
  • Центр, радиус, диаметр сферы называется также центром, радиусом и диаметром шара.

Касательная плоскость к сфере

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

Сечение шара плоскостью

  • Любое сечение шара плоскостью есть круг. Центр этого круга – основание перпендикуляра, опущенного из центра шара на секущую плоскость.
  • Сечение, проходящее через центр шара, - большой круг. (диаметральное сечение).

Задача на тему шар (д/з)

На поверхности шара даны три точки. Прямолинейные расстояния между ними 6 см, 8 см, 10 см. Радиус шара 13 см. Найдите расстояние от центра до плоскости, проходящей через эти точки. (1.7 см, 2.15 см, 3.12 см, 4.20 см)

Симметрия шара

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Доказательство: Пусть - диаметральная плоскость и Х - произвольная точка шара. Построим точку Х", симметричную точке Х относительно плоскости. Плоскость перпендикулярна отрезку ХХ" и пересекается ним в его середине (в точке А). Из равенства прямоугольных треугольников ОАХ и ОАХ" следует, что ОХ" =ОХ.

Так как ОХ?R, то и ОХ"?R, т.е. точка, симметричная точке Х, принадлежит шару. Первое утверждение теоремы доказано.

Пусть теперь Х"" - точка, симметричная точке Х относительно центра шара. Тогда ОХ"" = ОХ?R, т.е. точка Х"" принадлежит шару. Теорема доказана полностью.

Касательная плоскость к шару

Плоскость, проходящая через точку А шаровой поверхности перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: Пусть б - плоскость касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости б, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ > ОА = R. Следовательно, точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку - точку касания.

ddvor.ru - Одиночество и расставания. Популярные вопросы. Эмоции. Чувства. Личные отношения