Цитоплазма живой клетки. Особенности строения, свойства и функции цитоплазмы Цитоплазма в клетке выполняет функции

Цитоплазма является, пожалуй, самой важной частью любой клеточной структуры, представляющей собой своего рода «соединительную ткань» между всеми составляющими клетки.

Функции и свойства цитоплазмы многообразны, ее роль в обеспечении жизнедеятельности клетки вряд ли можно переоценить.

В данной статье описаны большинство процессов, происходящих в наименьшей живой структуре на макроуровне, где основная роль отведена гелеобразной массе, заполняющей внутренний объем клетки и придающей последней внешний вид и форму.

Вконтакте

Цитоплазма представляет собой вязкое (желеподобное) прозрачное вещество, которое заполняет каждую клетку и ограничено клеточной мембраной. В ее состав входят вода, соли, белки и другие органические молекулы.

Все органоиды эукариотов, такие как ядро, эндоплазматический ретикулят и митохондрии, расположены в цитоплазме. Часть ее, которая не содержится в органоидах, называется цитосоль. Хотя может показаться, что цитоплазма не имеет ни формы, ни структуры на самом деле она представляет собой высокоорганизованное вещество, которое обеспечивается за счет так называемого цитоскелета (белковая структура). Открыта была цитоплазма в 1835 году Робертом Брауном и другими учеными.

Химический состав

Главным образом цитоплазма представляет собой субстанцию, которая заполняет клетку. Эта субстанция вязкая, подобная гелю, состоит на 80% из воды и, обычно, является прозрачной и бесцветной.

Цитоплазма - субстанция жизни, которую также называют молекулярным супом , в котором клеточные органоиды находятся во взвешенном состоянии и соединены друг с другом двухслойной липидной мембраной. Цитоскелет, находящийся в цитоплазме, придает ей форму. Процесс цитоплазматического течения обеспечивает перемещение полезных веществ между органоидами и вывод продуктов жизнедеятельности. Эта субстанция содержит много солей и является хорошим проводником электричества.

Как было сказано, субстанция состоит на 70−90% из воды и является бесцветной . Большинство клеточных процессов происходят в ней, например, гликоз, метаболизм, процессы клеточного деления. Внешний прозрачный стеклообразный слой называется эктоплазмой или клеточной корой, внутренняя часть субстанции носит название эндоплазмы. В клетках растений имеет место процесс цитоплазматического течения, представляющий собой течение цитоплазмы вокруг вакуоля.

Основные характеристики

Следует перечислить следующие свойства цитоплазмы:

Структура и компоненты

В прокариотах (например, бактерии), которые не имеют ядра, соединенного с мембраной, цитоплазма представляет все содержимое клетки внутри плазматической мембраны. В эукариотах (например, клетки растений и животных) цитоплазма образована тремя отличающимися друг от друга компонентами: цитосоль, органоиды, различные частицы и гранулы, носящие название цитоплазматических включений.

Цитосоль, органоиды, включения

Цитосоль представляет собой полужидкий компонент, расположенный внешне по отношению к ядру и внутри плазматической мембраны. Цитосоль составляет приблизительно 70% объема клетки и состоит из воды, волокон цитоскелета, солей и органических и неорганических молекул, растворенных в воде. Также содержит протеины и растворимые структуры такие, как рибосомы и протеасомы. Внутренняя часть цитосоля, наиболее текучая и гранулированная, называется эндоплазмой.

Сеть волокон и высокие концентрации растворенных макромолекул, например, белков приводят к образованию макромолекулярных скоплений, которые сильно влияют на перенос веществ между компонентами цитоплазмы.

Органоид означает «маленький орган», который связан с мембраной. Органоиды находятся внутри клетки и выполняют специфические функции, необходимые для поддержания жизни этого наименьшего кирпичика жизни. Органоиды представляют собой маленькие клеточные структуры, выполняющие специальные функции. Можно привести следующие примеры:

  • митохондрии;
  • рибосомы;
  • ядро;
  • лизосомы;
  • хлоропласты (в растениях);
  • эндоплазматическая сеть;
  • аппарат Гольджи.

Внутри клетки также находится цитоскелет - сеть волокон, помогающих ей сохранять свою форму.

Цитоплазматические включения представляют собой частицы, которые временно находятся во взвешенном состоянии в желеобразной субстанции и состоят из макромолекул и гранул. Можно встретить три типа таких включений: секреторные, питательные, пигментные. В качестве примера секреторных включений можно назвать белки, ферменты и кислоты. Гликоген (молекула для хранения глюкозы) и липиды - яркие примеры питательных включений, меланин, находящийся в клетках кожи, является примером пигментных включений.

Цитоплазматические включения, будучи небольшими частицами, взвешенными в цитосоле, представляют собой разнообразную гамму включений, присутствующих в различного типа клетках. Это могут быть как кристаллы оксалата кальция или диоксида кремния в растениях, так и гранулы крахмала и гликогена. Широкую гамму включений представляют собой липиды, имеющие сферическую форму, присутствующие как в прокариотах, так и в эукариотах, и служащие для накопления жиров и жирных кислот. Например, такие включения занимают большую часть объема адипоситов - специализированных накопительных клеток.

Функции цитоплазмы в клетке

Наиболее важные функции можно представить в виде следующей таблицы:

  • обеспечение формы клетки;
  • среда обитания органоидов;
  • транспорт веществ;
  • запас полезных веществ.

Цитоплазма служит для поддержки органоидов и клеточных молекул. Множество клеточных процессов происходит в цитоплазме. Некоторые из этих процессов включают синтез белков, первый этап клеточного дыхания , который носит название гликолиз , процессы митоза и мейоза . Кроме того, цитоплазма помогает перемещаться гормонам по клетке, также через нее осуществляется вывод продуктов жизнедеятельности.

Большинство разных действий и событий происходит именно в этой желатиноподобной жидкости, в которой содержатся ферменты, способствующие разложению продуктов жизнедеятельности, также здесь проходит множество процессов метаболизма. Цитоплазма обеспечивает клетку формой, заполняя ее, помогает поддерживать органоиды на своих местах. Без нее клетка выглядела бы «сдутой», и различные вещества не могли бы легко перемещаться от одного органоида к другому.

Транспорт веществ

Жидкая субстанция содержимого клетки очень важна для поддержания ее жизнедеятельности, так как позволяет легко обмениваться питательными веществами между органоидами . Такой обмен обязан процессу цитоплазматического течения, представляющему собой потоки цитосоля (наиболее подвижная и текучая часть цитоплазмы), переносящие питательные вещества, генетическую информацию и другие вещества от одного органоида к другому.

Некоторые процессы, которые происходят в цитосоле, включают в себя также перенос метаболитов . Органоид может производить аминокислоту, жирную кислоту и другие вещества, которые через цитосоль перемещаются к органоиду, нуждающемуся в этих веществах.

Цитоплазматические потоки приводят к тому, что сама клетка может перемещаться . Некоторые наименьшие жизненные структуры снабжены ресничками (маленькие, похожие на волос образования снаружи клетки, позволяющие последней перемещаться в пространстве). Для других же клеток, например, амебы единственной возможностью перемещаться является перемещение жидкости в цитосоле.

Запас питательных веществ

Помимо транспорта различного материала, жидкое пространство между органоидами выступает в роли своего рода камеры хранения этих материалов до момента, когда они действительно потребуются тому или иному органоиду . Внутри цитосоля во взвешенном состоянии находятся протеины, кислород и различные строительные блоки. Помимо полезных веществ, в цитоплазме содержатся и продукты метаболизма, которые ждут своей очереди, пока процесс удаления не выведет их из клетки.

Плазматическая мембрана

Клеточная, или плазматическая, мембрана представляет собой образование, препятствующее вытеканию цитоплазмы из клетки. Эта мембрана состоит из фосфолепидов, образующих двойной липидный слой, который является полупроницаемым: лишь определенные молекулы могут проникать через этот слой. Протеины, липиды и другие молекулы могут проникать через клеточную мембрану посредством процесса эндоцитоза, при котором образуется пузырек с этими веществами.

Пузырек, включающий в себя жидкость и молекулы, отрывается от мембраны, образуя при этом эндосому. Последняя перемещается внутри клетки к своим адресатам. Продукты жизнедеятельности выводятся посредством процесса экзоцитоза. В этом процессе пузырьки, образующиеся в аппарате Гольджи, соединяются с мембраной, которая выталкивает их содержимое в окружающую среду. Также мембрана обеспечивает форму клетки и служит опорной платформой для цитоскелета и клеточной стенки (в растениях).

Клетки растений и животных

Подобие внутреннего содержимого клеток растений и животных говорит об их одинаковом происхождении. Цитоплазма обеспечивает механическую поддержку внутренним структурам клетки, которые находятся в ней во взвешенном состоянии.

Цитоплазма поддерживает форму и консистенцию клетки, а также содержит множество химических веществ, являющихся ключевыми для поддержания жизненных процессов и метаболизма.

Реакции метаболизма, такие как гликоз и синтез протеинов, происходят в желеобразном содержимом. В клетках растений, в отличие от животных, присутствует движение цитоплазмы вокруг вакуоли, которое известно как цитоплазматическое течение.

Цитоплазма клеток животных представляет собой вещество, подобное гелю, растворенному в воде, она заполняет весь объем клетки и содержит белки и другие важные молекулы, необходимые для жизнедеятельности. Гелеобразная масса содержит протеины, углеводороды, соли, сахара, аминокислоты и нуклеотиды , все клеточные органоиды и цитоскелет.

Цитоплазма - все содержимое клетки, за исключением ядра. Ее подразделяют на три части: органеллы (или органоиды), включения и гиалоплазму. Органеллы - обязательные компоненты клеток, а включения - необязательные компоненты (отложения запасных веществ или продуктов метаболизма) - погружены в гиалоплазму - жидкую фазу цитоплазмы клетки. Органеллы бывают двух типов: мембранные и немембранные. Среди мембранных можно выделить одномембранные (плазматическая мембрана, эндоплазматический ретикулюм, аппарат Гольджи, лизосомы и другие вакуоли) и двумембранные органеллы (митохондрии, пластиды, клеточное ядро). К немембранным органеллам относятся рибосомы, микротрубочки, клеточный центр.

Гиалоплазма (от греч. hyaline - прозрачный), или цитозоль, - это внутренняя среда клетки. Это не просто разбавленный водный раствор, а гель. Гиалоплазма может менять свою вязкость в зависимости от условий и переходить в более жидкое состояние (золь), обеспечивая движение клетки или ее внутриклеточных компонентов. Важнейшая функция гиалоплазмы - объединение всех клеточных структур и обеспечение химического взаимодействия между ними. Через нее осуществляется постоянный поток ионов и часть внутриклеточного транспортирования органических веществ. В ней локализованы , участвующие в синтезе аминокислот, нуклеотидов, жирных кислот, углеводов и происходит их модификация. Здесь синтезируются и откладываются запасные вещества, происходит гликолиз и синтез части АТФ.

Мембранные компоненты

Все клеточные мембраны построены по общему принципу. Основным их компонентом являются липиды. Молекулы липидов располагаются в 2 слоя таким образом, что их гидрофобные концы смотрят внутрь, а гидрофильные - наружу. Молекулы белков не образуют сплошных слоев, они могут на разную глубину погружаться в слой липидов. В состав многих мембран входят углеводы, которые локализуются снаружи над липидным слоем. Рост мембран осуществляется за счет включения нового материала в виде готовых замкнутых пузырьков. Синтез компонентов для мембран и их сборка происходят за счет деятельности гранулярного эндоплазматического ретикулюма.

Плазматическая мембрана, или плазмалемма

Снаружи клетка ограничена плазмалеммой (или плазматической мембраной) толщиной 10 нм. Она построена по принципу элементарных мембран.

Функции плазмалеммы: барьерная (ограничивает внутреннее содержимое клетки от внешней среды); транспортная (пассивное транспортирование , низкомолекулярных веществ, активный перенос против градиента концентрации, эндоцитоз); вывод из клеток продуктов, образованных в клетке; сигнальная (на мембране есть рецепторы, узнающие определенные ионы и взаимодействующие с ними); межклеточные взаимодействия у многоклеточных организмов; принимает участие в построении специальных структур, таких, как ворсинки, реснички, жгутики и др.

Через плазмалемму происходит активное и пассивное транспортирование. Пассивное транспортирование ионов идет по градиенту концентрации, без дополнительной затраты энергии. Растворенные молекулы проходят сквозь мембрану за счет простой диффузии через каналы, образованные транспортными . Активное транспортирование осуществляется с помощью ионных насосов против градиента концентрации с затратой энергии. В отличие от ионов и мономеров, макромолекулы сквозь клеточные мембраны не проходят, и их транспортирование происходит путем эндоцитоза. При эндоцитозе определенный участок плазмалеммы обволакивает внеклеточный материал, образует вакуоль, окруженную мембраной, за счет впячивания плазмалеммы. Внутри вакуоли макромолекулы, части клеток или даже целые клетки перевариваются после слияния с лизосомой. Эндоцитоз бывает двух типов: фагоцитоз и пиноцитоз. При фагоцитозе происходит захват и поглощение крупных частиц. Фагоцитоз встречается у животных, у некоторых водорослей, но его нет у растений, бактерий, грибов, так как их жесткая клеточная стенка препятствует фагоцитозу. Пиноцитоз сходен с фагоцитозом, но при нем поглощается вода и водные растворы.

Клеточные оболочки

Клеточная стенка, или оболочка, лежит над цитоплазматической мембраной. У многих клеток и животных она тонкая, состоит из молекул полисахаридов, называется гликокаликсом. Этот слой участвует в создании околоклеточной среды, играет роль фильтра, выполняет роль частичной механической защиты. Есть организмы, например некоторые водоросли, которые не имеют клеточной стенки, их тело покрыто только цитоплазматической мембраной. У прокариотических клеток, клеток грибов и растений снаружи расположена многослойная клеточная стенка (клеточная оболочка). Основу ее составляют полисахариды (у растений - целлюлоза, у бактерий - муреин, у грибов - хитин). Наиболее типичный компонент растительной клеточной стенки - целлюлоза. Она обладает кристаллическими свойствами и в оболочке существует в виде микрофибрилл, из которых формируется каркас оболочки. Этот каркас погружен в матрикс, в состав которого входят полисахариды - гемицеллюлозы и пектины.

Другой компонент оболочки - лигнин. Этот полимер увеличивает жесткость стенки и содержится в клетках, выполняющих механическую или опорную функцию. В оболочках защитных тканей растений могут откладываться жировые вещества - кутин, суберин, воска. Они предотвращают чрезмерную потерю воды растением.

Функции клеточной стенки: внешний каркас; защитная; тургор клеток; проводящая (через нее проходит вода, соли и молекулы многих органических веществ).

Эндоплазматический ретикулюм

Эндоплазматический ретикулюм (ЭР) - система мелких вакуолей и каналов, соединенных друг с другом в рыхлую сеть (ретикулюм). Существуют два типа ЭР: гладкий и гранулярный (шероховатый). Гранулярный ретикулюм имеет на своих мембранах со стороны гиалоплазмы мелкие (около 20 нм) гранулы. Эти гранулы - рибосомы, связанные с мембранами ЭР.

Функции ЭР: образование и построение клеточных мембран (на ЭР синтезируются все мембранные белки и липиды мембран); синтез секретируемых белков на рибосомах его мембран; обособление этих белков и их изоляция от основных функционирующих белков клетки; модификация секреторных белков; транспортирование белков в аппарат Гольджи.

Гладкий ЭР представлен мембранами, образующими мелкие вакуоли и каналы, соединенные между собой, но на Цих нет рибосом. Деятельность гладкого ЭР связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. В некоторых клетках, например в интерстициальных клетках семенника, гладкий ЭР занимает большую часть объема цитоплазмы, богаты им и клетки сальных желез, в то время как в эпителиальных клетках кишечника гладкий ЭР сконцентрирован только в верхней части клетки. Отмечено, что гладкий и гранулярный ЭР могут находиться в одной и той же клетке и существует непрерывность перехода между ними.

Аппарат Гольджи

Аппарат Гольджи (АГ) был открыт в 1898 г. Камилло Гольджи в нервных клетках. В дальнейшем было показано, что эта структура присутствует во всех эукариотических клетках. Обычно АГ располагается вблизи ядра, а в растительных клетках по периферии. АГ представлен мембранными компонентами, собранными вместе. Отдельная зона скопления таких мембран называется диктиосомой. Плоские мембранные мешочки или цистерны, в количестве 5-10 (реже до 20), достаточно плотно упакованы в стопки в диктиосомах. Помимо цистерн в зоне АГ имеется множество вакуолей. В клетках АГ существует в двух формах: диффузной, в виде отдельных диктиосом (такой тип преобладает в растительных клетках), и сетчатой, когда отдельные диктиосомы связаны друг с другом.

Функции аппарата Гольджи. Основная функция АГ - секреторная. При этом процессе отдельные мелкие пузырьки с готовым продуктом отщепляются от диктиосом. Затем они или разносятся по цитоплазме для внутреннего потребления клетки, или сливаются в секреторные вакуоли. Эти вакуоли двигаются к поверхности клетки, где их мембрана сливается с плазматической и таким образом осуществляется выделение содержимого этих вакуолей за пределы клетки. Этот процесс носит название экзоцитоз.

АГ осуществляет и накопительную функцию. В его цистернах происходит накопление продуктов, синтезированных в ЭР. Некоторые из этих продуктов, например белки, модифицируются. В АГ также происходит сортировка и пространственное разделение белков.

В ряде специализированных клеток в АГ происходит синтез полисахаридов. Например, в АГ растительных клеток синтезируются полисахариды, входящие в состав клеточной стенки. АГ растительных клеток также участвует в синтезе и выделении различных слизей.

АГ является источником лизосом.

Лизосомы

Лизосомы образуются за счет активности ЭР и АГ, напоминают секреторные вакуоли. Они покрыты липопротеидной мембраной, в которую встроены белки-переносчики для переноса из лизосом в гиалоплазму продуктов гидролиза. Лизосомы содержат около 40 гидролитических ферментов, работающих в кислой среде, но сами очень устойчивы к этим ферментам. Они участвуют в процессах внутриклеточного расщепления экзогенных и эндогенных макромолекул (белков, нуклеиновых кислот, полисахаридов, липидов), поглощаемых путем пиноцитоза и фагоцитоза. В некоторых случаях, выбрасывая свое содержимое в наружную среду, они могут осуществлять внеклеточное разложение макромолекул. Лизосомы выполняют роль внутриклеточных чистильщиков, переваривая дефектные клеточные органеллы.

Вакуоли растительных клеток

Растительные клетки отличаются от животных наличием одной или нескольких крупных вакуолей, которые отделены от цитоплазмы мембраной. Центральная вакуоль образуется за счет слияния и роста мелких пузырьков, отчленяющихся от ЭР. Полость вакуоли заполнена клеточным соком, в состав которого входят неорганические соли, сахара, органические кислоты и их соли, а также ряд высокомолекулярных соединений.

Функции вакуоли: поддержание тургорного давления клеток; осуществление активного транспортирование различных молекул; накопление запасных веществ и веществ, предназначенных для экскреции.

Митохондрии

Митохондрии (от греческого mitos - нить, с chondrion - зернышко) - это энергетические станции клетки, их основная функция связана с окислением органических соединений и использованием освобождающейся энергии для синтеза АТФ. Они имеют форму гранул или нитей. Их размеры и форма очень непостоянны у разных видов. Количество митохондрий на клетку может быть различным у разных организмов: так, гигантские одиночные разветвленные митохондрии встречаются у трипаносом, у некоторых одноклеточных водорослей; с другой стороны, в клетках печени насчитывается около 200 митохондрий, а у некоторых простейших до 500 000. В некоторых клетках митохондрии могут сливаться в одну гигантскую митохондрию, как, например, в спермии млекопитающих имеется спирально закрученная гигантская митохондрия.

Митохондрии покрыты двумя мембранами. Наружняя мембрана отграничивает митохондрию от гиалоплазмы, ее толщина около 7 нм, она гладкая, без впячиваний и складок. Внутренняя мембрана образует многочисленные впячивания внутрь митохондрии - кристы , которые не полностью перегораживают полость митохондрии. Внутреннее содержимое митохондрии - матрикс . Матрикс имеет тонкозернистое гомогенное строение, в нем располагаются митохондриальные рибосомы и митохондриальная ДНК. Митохондриальные рибосомы по размерам мельче, чем рибосомы цитоплазмы. ДНК в митохондриях имеет кольцевидную форму и не образует связи с гистонами. В матриксе расположены ферменты, участвующие в цикле трикарбоновых кислот, и ферменты окисления жирных кислот. В матриксе также окисляются некоторые аминокислоты. На кристах митохондрий располагается дыхательная цепь (цепь переноса электронов) - система превращения энергии, здесь происходит синтез АТФ.

Число митохондрий в клетках может увеличиваться за счет их роста и деления. Большая часть белков митохондрий синтезируется вне митохондрий и контролируется ядром, митохондриальная ДНК кодирует лишь немногочисленные митохондриальные белки.

Пластиды

Пластиды - органеллы, встречающиеся у фотосинтезирующих организмов (растений, водорослей). Существует несколько типов пластид: хлоропласты, хромопласты, лейкопласты, амилопласты.

В хлоропластах (от греческого chloros - зеленый и plastos - вылепленный) протекает фотосинтез. Хлоропласты варьируются по форме и размерам у разных организмов. Некоторые из них имеют форму чаши и достаточно крупные, другие - звездчатую форму, форму спирально закрученных лент, кольца, сети и т. д. Такие хлоропласты встречаются у водорослей (у водорослей хлоропласты называются хроматофорами). Более обычные хлоропласты имеют форму округлых зерен или дисков. Их количество на клетку также отличается у разных представителей. Так, у некоторых водорослей только один хлоропласт в клетке, у высших растений в клетке в среднем - 10-30 хлоропластов, хотя встречаются клетки, в которых насчитывается около тысячи хлоропластов. Из-за преобладания хлорофиллов эти пластиды у зеленых, эвгленовых водорослей и высших растений окрашены в зелёный цвет, окраска этих пластид у других водорослей варьируется в зависимости от комбинации и количества дополнительных пигментов.

Хлоропласт ограничен двумя мембранами, внешней и внутренней, каждая толщиной 7 нм. Внутренняя мембрана образует впячивания внутрь матрикса. В матриксе хлоропласта сосредоточено большое количество мембран, имеющих форму плоских пузырьков, называемых тилакоидами (от греческого thylaros - мешок). В эти мембраны встроены пигменты - хлорофиллы и каротиноиды. Тилакоиды у высших растений собраны в стопки, наподобие столбика монет, которые называются гранами . На мембранах тилакоидов проходит световая фаза фотосинтеза, в эти мембраны помимо хлорофиллов и каротиноидов встроены молекулярные комплексы АТФ-синтетазы, которые переносят протоны в матрикс хлоропласта и участвуют в синтезе АТФ.

С матриксом (стромой) связана темновая фаза фотосинтеза, так Как в нем содержатся ферменты, участвующие в темновых реакциях связывания атмосферного углекислого газа и образования углеводов. В строме хлоропластов, помимо этого, происходит образование жирных кислот и аминокислот. В матриксе хлоропласта находится пластидная ДНК, разные типы РНК, рибосомы и откладывается запасной продукт - крахмал. ДНК хлоропластов, как и ДНК митохондрий, отличается от ДНК ядра. По своим характеристикам она близка к ДНК прокариот, представлена кольцевой молекулой, не связана с гистонами. Рибосомы в хлоропластах, так же как и рибосомы в митохондриях, меньше рибосом цитоплазмы. И так же как в митохондриях, основная масса белков хлоропласта контролируется ядерной ДНК. Таким образом, как и митохондрии, хлоропласты - структуры с ограниченной автономией.

У водорослей новые хлоропласты образуются при делении зрелых. У высших растений такое деление встречается достаточно редко. Увеличение числа пластид, в том числе и хлоропластов, у высших растений происходит за счет превращения предшественников - пропластид (от греческого рго - перед, раньше). Пропластиды встречаются в меристематических тканях, в точках роста растений. Пропластиды - это мелкие (0,4-1 мкм) двумембранные пузырьки, с недифференцированным содержимым. Внутренняя мембрана может образовывать небольшие складки. Пропластиды размножаются делением. При нормальном освещении пропластиды преобразуются в хлоропласты.

Лейкопласты (от греческого leuros - белый, бесцветный) - бесцветные пластиды; в отличие от хлоропластов, у них менее дифференцировано внутреннее содержимое, в строме не развита система мембран. Встречаются они у растений в запасающих тканях. Их часто трудно отличить от пропластид. В темноте в них откладываются запасные вещества, в том числе и крахмал. На свету они могут превращаться в хлоропласты. В эндосперме семян, в корневищах и клубнях накопление крахмала в лейкопластах приводит к образованию амилопластов (от греческого amylon - крахмал), у которых строма заполнена гранулами крахмала.

Хромопласты (от греческого chroma - цвет) - пластиды, окрашенные у высших растений в желтый, оранжевый и красный цвета, что связано с накоплением каротиноидных пигментов. Эти пластиды образуются из хлоропластов (при старении листьев, развитии лепестков цветков, созревании плодов) и реже из лейкопластов (например, в корнеплоде моркови). При этом уменьшается число мембран, исчезает хлорофилл и крахмал и накапливаются каротиноиды.

Немембранные компоненты

Рибосома

Рибосома - клеточный немембранный органоид, на котором происходит синтез белка в клетке. Рибосомы расположены на мембранах гранулированного ЭР, в цитоплазме и в ядре. В состав рибосом входят молекулы неповторяющихся белков и несколько молекул рРНК. Рибосомы прокариот и эукариот обладают общими принципами организации и функционирования, но они отличаются по своим размерам и молекулярным характеристикам.

Рибосома состоит из двух неравных субъединиц - большой и малой. У прокариотических клеток они названы 5OS и 3OS субъединицы, у эукариотических клеток - 6OS и 4OS. S - коэффициент седиментации (лат. sedimentum - осадок), который характеризует скорость осаждения частицы при ультрацентрифугировании и зависит от молекулярной массы и пространственной конфигурации частицы. 3OS субъединица содержит 1 молекулу 168 рРНК и 21 белковую молекулу, 5OS субъединица содержит 2 молекулы РНК (5S и 23S) и 34 белковые молекулы. Субъединицы рибосом эукариот содержат большее количество белков (около 80) и молекул рРНК. В митохондриях и хлоропластах также имеются рибосомы, которые близки к рибосомам прокариот.

Опорно-двигательная система (цитоскелет)

Понятие о цитоскелете было высказано в начале XX века выдающимся русским ученым Н. К. Кольцовым, и только с помощью электронного микроскопа эта система была переоткрыта. Цитоскелет состоит из нитевидных неветвящихся белковых комплексов - филаментов . Выделяют три системы филаментов, которые различаются по химическому составу, ультраструктуре и функциям, - микрофиламенты (например, в мышечных клетках), микротрубочки (много в пигментных клетках) и промежуточные филаменты (например, в клетках эпидермиса кожи). Цитоскелет принимает участие в процессах движения внутри клетки или самих клеток и выполняет каркасную скелетную роль. Он отсутствует у прокариот.

Микрофиламенты имеют диаметр 6 нм и состоят в основном из белка актина, при полимеризации которого образуется тонкая фибрилла в виде пологой спиральной ленты. Вместе с белком миозином он входит в состав сократимых фибрилл - миофибрилл. Микрофиламенты встречаются во всех клетках эукариот. В немышечных клетках они могут быть частью сократительного аппарата и участвовать в образовании жестких скелетных структур. Многие эпителиальные клетки густо покрыты выростами цитоплазматической мембраны - микроворсинками, внутри которых расположен плотный пучок из 20-30 актиновых филаментов, который придает жесткость и прочность микроворсинкам.

Микротрубочки имеют диаметр 25 нм и состоят в основном из белка тубулина, который при полимеризации формирует полые трубки. Микротрубочки встречаются в цитоплазме интерфазных клеток поодиночке, пучками или в составе центриолей, базальных телец, в ресничках и жгутиках, входят в состав веретена деления. Микротрубочки - динамичные структуры и могут быстро формироваться и разбираться. Их функция - скелетная и двигательная.

Нет принципиальной разницы в тонкой организации ресничек и жгутиков. У животных реснички характерны для клеток реснитчатого эпителия, их численность может достигать 10-14 тысяч на клетку у туфельки. Жгутики встречаются у гамет водорослей, сперматозоидов животных, спор бесполого размножения водорослей, некоторых грибов, мхов, папоротников и др. Ресничка и жгутик представляют вырост цитоплазмы, покрытый цитоплазматической мембраной. Внутри него расположена аксонема, состоящая из 9 дуплетов микротрубочек по периферии и пары микротрубочек в центре. Нижняя часть жгутика и реснички погружена в цитоплазму - базальное тельце , состоящее из 9 триплетов микротрубочек. Базальное тельце и аксонема составляют единое целое. В основании ресничек и жгутиков часто встречаются пучки микрофибрилл и микротрубочек - корешки.

Промежуточные филаменты имеют диаметр около 10 нм и образуются из разных, но родственных белков. Это самые стабильные и долгоживущие цитоскелета. Они локализованы преимущественно в околоядерной зоне и в пучках фибрилл, отходящих к периферии клеток. Особенно много их в клетках, подверженных механическим воздействиям.

Клеточный центр

Клеточный центр - структура цитоплазмы, которая является источником роста микротрубочек, своеобразный центр их организации. Под клеточным центром понимают совокупность центриолей и центросферы . Центриоли обычно располагаются в геометрическом центре клетки. Эти структуры обязательны для клеток животных, а также встречаются у некоторых водорослей, отсутствуют у высших растений, ряда простейших и грибов. В делящихся клетках они принимают участие в формировании веретена деления. Центриоли состоят из 9 триплетов микротрубочек, образующих полый цилиндр шириной около 0,15 мкм, длиной - 0,3-0,5 мкм. В интерфазных клетках присутствуют 2 центриоли. Центросфера окружает центриоли и представляет собой совокупность дополнительных структур: исчерченные волокнистые корешки, дополнительные микротрубочки, фокусы схождения микротрубочек. В центросфере микротрубочки радиально расходятся от зоны центриоли.

Сегодня вы сможете узнать, что такое цитоплазма в биологии. Помимо этого, предлагаем обратить внимание на множество интересных вопросов:

  1. Организация клетки.
  2. Гиалоплазма.
  3. Свойства и функции цитоплазмы.
  4. Органоиды и так далее.

Для начала предлагаем ввести для неизвестного термина определение. Цитоплазма - это та часть клетки, которая находится за пределами ядра и ограничивается мембраной. Все содержимое клетки, включая ядро - это протоплазма.

Важно обратить внимание на то, что именно здесь происходят важные метаболические процессы. В цитоплазме происходит:

  • поглощение ионов и других метаболитов;
  • транспортировка;
  • образование энергии;
  • синтез белковых и небелковых продуктов;
  • клеточное пищеварение и так далее.

Все вышеперечисленные процессы поддерживают жизнеспособность клетки.

Типы структурной организации клетки

Ни для кого не секрет, что все ткани и органы образованы из мельчайших частиц - клеток.

Ученые смогли выделить всего два их вида:

  • прокариотические;
  • эукариотические.

Самые простые формы жизни содержат одну-единственную клетку и размножаются при помощи ее деления. Приведенные две формы клеток имеют некоторые отличия и сходства. В прокариотических клетках отсутствует ядро, а хромосома находится непосредственно в цитоплазме (что такое цитоплазма в биологии было сказано ранее). Это строение присутствует у бактерий. Другое дело - эукариотическая клетка. О ней мы поговорим в следующем разделе.

Эукариотическая клетка

Данный вид имеет более сложное строение. ДНК связана с белком и находится в хромосомах, которые, в свою очередь, располагаются в ядре. Этот органоид отделен при помощи мембраны. Несмотря на большое количество отличий, у клеток есть нечто общее - внутреннее содержимое наполнено коллоидным раствором.

Цитоплазма клетки (или коллоидный раствор) является важной составляющей. Она имеет полужидкое состояние. Там же мы можем обнаружить:

  • канальцы;
  • микротрубочки;
  • микрофиламенты;
  • филаменты.

Цитоплазма - это коллоидный раствор, в котором происходит движение коллоидных частиц и других компонентов. Сам раствор состоит из воды и других соединений (как органических, так и неорганических). Именно в цитоплазме располагаются органоиды и временные включения.

Различия между цитоплазмой растительной и животной клетки

Определение цитоплазмы мы уже ввели, теперь выявим отличия коллоидного раствора у животных и растительных клеток.

  1. Цитоплазма растительной клетки. В ее составе мы можем обнаружить пластиды, которых всего насчитывается три вида: хлоропласты, хромопласты и лейкопласты.
  2. Цитоплазма животной клетки. В данном случае мы можем наблюдать два слоя цитоплазмы - эктоплазму и эндоплазму. Наружный слой (эктоплазма) содержит огромное количество микрофиламента, а внутренний слой - органоиды и гранулы. При этом эндоплазма менее вязкая.

Гиалоплазма

Основа цитоплазмы клетки - гиалоплазма. Что это такое? Гиалоплазма - это раствор, который неоднородный по своему составу, слизистый и бесцветный. Именно в данной среде протекает обмен веществ. Часто применяется относительно гиалоплазмы термин "матрикс".

В состав входят:

  • белки;
  • липиды;
  • полисахариды;
  • нуклеотиды;
  • аминокислоты;
  • ионы неорганических соединений.

Гиалоплазма представлена двумя формами:

  • гель;
  • золь.

Между двумя данными фазами есть взаимопереходы.

Вещества коллоидного раствора клетки

Что такое цитоплазма в биологии, мы уже пояснили, теперь предлагаем переходить к рассмотрению химического состава коллоидного раствора. Все вещества, которые входят в состав клетки, можно разделить на две обширные группы:

  • органические;
  • неорганические.

В первой группе находятся:

  • белки;
  • углеводы (моносахариды, дисахариды и полисахариды);
  • жиры;
  • нуклеиновые кислоты.

Немного подробнее об углеводах. Моносахариды - фруктоза, глюкоза, рибоза и другие. Крупные полисахариды состоят из моносахаридов - крахмала, гликогена и целлюлозы.

  • вода (девяносто процентов);
  • кислород;
  • водород;
  • углерод;
  • азот;
  • натрий;
  • кальций;
  • сера;
  • хлор и так далее.

Свойства цитоплазмы

Говоря о том, что такое цитоплазма в биологии, нельзя обойти стороной вопрос о свойствах коллоидного раствора.

Первая и очень важная особенность - циклоз. Другими словами, это движение, которое происходит внутри клетки. Если данное движение останавливается, то клетка сразу же погибает. Скорость циклоза напрямую зависит от некоторых факторов, таких как:

  • свет;
  • температура и так далее.

Второе свойство - вязкость. Данный показатель изменяется в зависимости от организма. Вязкость цитоплазмы напрямую зависит от обмена веществ.

Третья особенность - полупроницаемость. Наличие пограничных мембран в цитоплазме позволяет некоторые молекулы пропускать, а другие задерживать. Эта избирательная проницаемость играет важную роль в жизнедеятельности клетки.

Органоиды цитоплазмы

Все органоиды, входящие в состав клетки, можно разделить на две группы.

  1. Мембранные. Это замкнутые полости (вакуоль, мешочек, цистерна). Данное название они получили, потому что содержимое органоида отделено от цитоплазмы при помощи мембраны. При этом все мембранные органоиды можно разделить еще на две группы: одномембранные и двумембранные. К первым относят эндоплазматический ретикулум, комплекс Гольджи, лизосомы, пероксисомы. Важно заметить, что все одномембранные органоиды взаимосвязаны между собой и создают единую систему. К двумембранным органоидам относят митохондрии и пластиды. Они имеют сложную структуру, а от цитоплазмы их отделяют целых две мембраны.
  2. Немембранные. Сюда относятся фибриллярные структуры и рибосомы. К первым относят микрофиламенты, микрофибриллы и микротрубочки.

Помимо органоидов, в состав цитоплазмы входят включения.

Функции цитоплазмы

К функциям цитоплазмы относятся:

  • заполнение области клетки;
  • связывание клеточных компонентов;
  • объединение компонентов клетки в единое целое;
  • определение положения органелл;
  • проводник для химических и физических процессов;
  • поддержание внутреннего давления в клетке, объема, упругости.

Как видите, значение цитоплазмы очень велико для всех клеток, как эукариотических, так и прокариотических.

κύτος «клетка» и πλάσμα зд. «содержимое») - внутренняя среда живой или умершей клетки, кроме ядра и вакуоли , ограниченная плазматической мембраной . Включает в себя гиалоплазму - основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты - органеллы , а также различные непостоянные структуры - включения .

В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы - вода.

Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. Это движение называется циклозом . В ней протекают все процессы обмена веществ.

Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Однако нормально функционирует цитоплазма только в присутствии ядра. Без него долго существовать цитоплазма не может, так же как и ядро без цитоплазмы.

Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия. Так же цитоплазма поддерживает тургор(объём) клетки, поддержание температуры.


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Цитоплазма" в других словарях:

    Цитоплазма … Орфографический словарь-справочник

    ЦИТОПЛАЗМА, желеобразное вещество внутри КЛЕТКИ, окружающее ЯДРО. Цитоплазма имеет сложный состав и содержит различные тела, называемые органеллами, выполняющими определенные функции в процессе метаболизма. В цитоплазме вырабатываются белки,… … Научно-технический энциклопедический словарь

    Саркоплазма Словарь русских синонимов. цитоплазма сущ., кол во синонимов: 5 аксоплазма (1) … Словарь синонимов

    - (от цито... и плазма) внеядерная часть протоплазмы животных и растительных клеток. Состоит из гиалоплазмы, в которой содержатся органоиды и др. включения … Большой Энциклопедический словарь

    - (от цито... и плазма), обязательная часть клетки, заключённая между плазматич. мембраной и ядром; высокоупорядоченная многофазная коллоидная система гиалоплазма с находящимися в ней органоидами. Иногда Ц. наз. только гиалоплазму. Для Ц.… … Биологический энциклопедический словарь

    Название, предложенное Стасбергером для обозначенияпротоплазмы клетки, в отличие от протоплазмы ядра или нуклеоплазмы … Энциклопедия Брокгауза и Ефрона

    цитоплазма - Коллоидный компонент клетки, в котором содержатся органоиды и включения Тематики биотехнологии EN cytoplasm … Справочник технического переводчика

    Цитоплазма - (от цито... и plasma вылепленное, оформленное), внутреннее содержимое клетки (за исключением ядра), окруженное мембраной. Состоит из гиалоплазмы (сложный коллоидный раствор) и погруженных в нее различных структур (органелл). В цитоплазме… … Иллюстрированный энциклопедический словарь

    Цитоплазма - * цытаплазма * cytoplasm протоплазма клетки без клеточного ядра, в которой происходит большинство клеточных процессов. Ц. состоит из эндоплазматической сети (см.) и ряда др. органелл (см.), расположенных в основной внутренней среде клетки,… … Генетика. Энциклопедический словарь

    Ы; ж. Биол. Внеядерная часть протоплазмы животных и растительных организмов. ◁ Цитоплазменный, ая, ое. * * * цитоплазма (от цито... и плазма), внеядерная часть протоплазмы животных и растительных клеток. Состоит из гиалоплазмы, в которой… … Энциклопедический словарь

Цитоплазма

Цитоплазма (греч. kytos (cytos ) — сосуд, вместилище, клетка и plasma — образование) — содержимое клетки, заполняющее пространство внутри клеточной мембраны (за исключением ядра); состоит из относительно гомогенной части — гиалоплазмы, представляющей собой коллоидный раствор, и находящихся в ней обязательных клеточных компонентов (органоидов) и непостоянных структур (включений).

Термин «цитоплазма» предложен немецким ботаником Э. Страсбургером (1882).

В цитоплазме происходит подавляющее большинство клеточных процессов. В гиалоплазме протекает гликолиз, синтез жирных кислот, нуклеотидов и других веществ. Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур и обеспечении их взаимодействия.

Функции цитоплазмы

На микрофотографии: цитоплазма клетки с органоидами

Цитоплазма способна к воспроизведению и при частичном удалении может восстановливаться. Однако нормально функционирует цитоплазма только в присутствии ядра.

Цитоплазма является динамической структурой: иногда в клетках заметно круговое движение цитоплазмы — циклоз , в которое вовлекаются органоиды и включения.

Плазмолиз (греч. plásma — вылепленное, оформленное и lýsis — разложение, распад) — отставание цитоплазмы от оболочки при погружении клетки в гипертонический раствор.


Плазмолиз характерен главным образом для растительных клеток, имеющих прочную целлюлозную клеточную стенку. Животные клетки при перенесении в гипертонический раствор сжимаются.

В зависимости от вязкости цитоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора и от времени пребывания клетки в гипертоническом растворе различают уголковый, выпуклый, вогнутый и судорожный плазмолиз.

В результате плазмолиза клетка может погибнуть. Иногда плазмолизированные клетки остаются живыми; при погружении таких клеток в воду или гипотонический раствор происходит деплазмолиз .

Цитоплазма — это особый рабочий аппарат клетки, в котором происходят основные процессы обмена веществ и превращения энергии и сосредоточены органоиды.

Функциональный аппарат цитоплазмы состоит из:

  1. гиалоплазмы - основной цитоплазмы. Это коллоидные растворы белков и других органических веществ с истинными растворами минеральных солей;
  2. немембранных структур;
  3. мембранных структур и их содержимого.

Гиалоплазма (греч. hyalos — стекло, стекловидный и plasma — образование) — жидкая часть цитоплазмы, не содержащая структур, различимых в световом микроскопе. Это основное вещество клетки, заполняющее пространство между органоидами. Гиалоплазму также называют цитоплазматическим матриксом (греч. matrix - основа), или цитозолем .

Основная функция гиалоплазмы — объединение всех клеточных структур и обеспечение их химического взаимодействия и транспортных процессов внутри клетки .

Основное вещество гиалоплазмы — это вода (80-90%). Содержание полимерных органических веществ достигает 7-10%, главным образом это белки, полисахариды и нуклеиновые кислоты. Биополимерные соединения образуют с водой коллоидную систему, которая в зависимости от условий может быть более плотной (в форме геля) или более жидкой (в форме золя). Кроме того, в гиалоплазме содержатся липиды, аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные органические вещества, а также неорганические ионы.

ddvor.ru - Одиночество и расставания. Популярные вопросы. Эмоции. Чувства. Личные отношения