Действия над вероятностями. Вероятность противоположного события

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

  • Раздел 1. Случайные события (50 часов)
  • Тематический план дисциплины для студентов очно-заочной формы обучения
  • Тематический план дисциплины для студентов заочной формы обучения
  • 2.3. Структурно-логическая схема дисциплины
  • Математика ч.2. Теория вероятностей и элементы математической статистики Теория
  • Раздел 1 Случайные события
  • Раздел 3 Элементы математической статистики
  • Раздел 2 Случайные величины
  • 2.5. Практический блок
  • 2.6. Балльно-рейтинговая система
  • Информационные ресурсы дисциплины
  • Библиографический список Основной:
  • 3.2. Опорный конспект по курсу “ Математика ч.2. Теория вероятностей и элементы математической статистики” введение
  • Раздел 1. Случайные события
  • 1.1. Понятие случайного события
  • 1.1.1. Сведения из теории множеств
  • 1.1.2. Пространство элементарных событий
  • 1.1.3. Классификация событий
  • 1.1.4. Сумма и произведение событий
  • 1.2. Вероятности случайных событий.
  • 1.2.1. Относительная частота события, аксиомы теории вероятностей. Классическое определение вероятности
  • 1.2.2. Геометрическое определение вероятности
  • Вычисление вероятности события через элементы комбинаторного анализа
  • 1.2.4. Свойства вероятностей событий
  • 1.2.5. Независимые события
  • 1.2.6. Расчет вероятности безотказной работы прибора
  • Формулы для вычисления вероятности событий
  • 1.3.1. Последовательность независимых испытаний (схема Бернулли)
  • 1.3.2. Условная вероятность события
  • 1.3.4. Формула полной вероятности и формула Байеса
  • Раздел 2. Случайные величины
  • 2.1. Описание случайных величин
  • 2.1.1. Определение и способы задания случайной величины Одним из основных понятий теории вероятности является понятие случайной величины. Рассмотрим некоторые примеры случайных величин:
  • Чтобы задать случайную величину, надо указать ее закон распределения. Случайные величины принято обозначать греческими буквами ,,, а их возможные значения – латинскими буквами с индексамиxi,yi,zi.
  • 2.1.2. Дискретные случайные величины
  • Рассмотрим события Ai , содержащие все элементарные события , приводящие к значению XI:
  • Пусть pi обозначает вероятность события Ai:
  • 2.1.3. Непрерывные случайные величины
  • 2.1.4. Функция распределения и ее свойства
  • 2.1.5. Плотность распределения вероятности и ее свойства
  • 2.2. Числовые характеристики случайных величин
  • 2.2.1. Математическое ожидание случайной величины
  • 2.2.2. Дисперсия случайной величины
  • 2.2.3. Нормальное распределение случайной величины
  • 2.2.4. Биномиальное распределение
  • 2.2.5. Распределение Пуассона
  • Раздел 3. Элементы математической статистики
  • 3.1. Основные определения
  • Гистограмма
  • 3.3. Точечные оценки параметров распределения
  • Основные понятия
  • Точечные оценки математического ожидания и дисперсии
  • 3.4. Интервальные оценки
  • Понятие интервальной оценки
  • Построение интервальных оценок
  • Основные статистические распределения
  • Интервальные оценки математического ожидания нормального распределения
  • Интервальная оценка дисперсии нормального распределения
  • Заключение
  • Глоссарий
  • 4. Методические указания к выполнению лабораторных работ
  • Библиографический список
  • Лабораторная работа 1 описание случайных величин. Числовые характеристики
  • Порядок выполнения лабораторной работы
  • Лабораторная работа 2 Основные определения. Систематизация выборки. Точечные оценки параметров распределения. Интервальные оценки.
  • Понятие статистической гипотезы о виде распределения
  • Порядок выполнения лабораторной работы
  • Ячейка Значение Ячейка Значение
  • 5. Методические указания к выполнению контрольной работы Задание на контрольную работу
  • Методические указания к выполнению контрольной работы События и их вероятности
  • Случайные величины
  • Среднее квадратическое отклонение
  • Элементы математической статистики
  • 6. Блок контроля освоения дисциплины
  • Вопросы для экзамена по курсу « Математика ч.2. Теория вероятностей и элементы математической статистики»
  • Продолжение таблицы в
  • Окончание таблицы в
  • Равномерно распределенные случайные числа
  • Содержание
  • Раздел 1. Случайные события………………………………………. 18
  • Раздел 2 . Случайные величины..………………………… ….. 41
  • Раздел 3. Элементы математической статистики............... . 64
  • 4. Методические указания к выполнению лабораторных
  • 5. Методические указания к выполнению контрольной
      1. Формулы для вычисления вероятности событий

    1.3.1. Последовательность независимых испытаний (схема Бернулли)

    Предположим, что некоторый эксперимент можно проводить неоднократно при одних и тех же условиях. Пусть этот опыт производится n раз, т. е. проводится последовательность из n испытаний.

    Определение. Последовательность n испытаний называют взаимно независимой , если любое событие, связанное с данным испытанием, не зависит от любых событий, относящихся к остальным испытаниям.

    Допустим, что некоторое событие A может произойти с вероятностью p в результате одного испытания или не произойти с вероятностью q = 1- p .

    Определение . Последовательность из n испытаний образует схему Бернулли, если выполняются следующие условия:

      последовательность n испытаний взаимно независима,

    2) вероятность события A не изменяется от испытания к испытанию и не зависит от результата в других испытаниях.

    Событие A называют “ успехом” испытания, а противоположное событие - “неудачей”. Рассмотрим событие

    ={ в n испытаниях произошло ровно m “успехов”}.

    Для вычисления вероятности этого события справедлива формула Бернулли

    p () =
    , m = 1, 2, …, n , (1.6)

    где - число сочетаний из n элементов по m :

    =
    =
    .

    Пример 1.16. Три раза подбрасывают кубик. Найти:

    а) вероятность того, что 6 очков выпадет два раза;

    б) вероятность того, что число шестерок не появится более двух раз.

    Решение . “Успехом” испытания будем считать выпадение на кубике грани с изображением 6 очков.

    а) Общее число испытаний – n =3, число “успехов” – m = 2. Вероятность “успеха” - p =, а вероятность “неудачи” - q = 1 - =. Тогда по формуле Бернулли вероятность того, что результате трехразового бросания кубика два раза выпадет сторона с шестью очками, будет равна

    .

    б) Обозначим через А событие, которое заключается в том, что грань с числом очков 6 появится не более двух раз. Тогда событие можно представить в виде суммы трех несовместных событий А=
    ,

    где В 3 0 – событие, когда интересующая грань ни разу не появится,

    В 3 1 - событие, когда интересующая грань появится один раз,

    В 3 2 - событие, когда интересующая грань появится два раза.

    По формуле Бернулли (1.6) найдем

    p (А ) = р (
    ) = p (
    )=
    +
    +
    =

    =
    .

    1.3.2. Условная вероятность события

    Условная вероятность отражает влияние одного события на вероятность другого. Изменение условий, в которых проводится эксперимент, также влияет

    на вероятность появления интересующего события.

    Определение. Пусть A и B – некоторые события, и вероятность p (B )> 0.

    Условной вероятностью события A при условии, что “событие B уже произошло” называется отношение вероятности произведения данных событий к вероятности события, которое произошло раньше, чем событие, вероятность которого требуется найти. Условная вероятность обозначается как p (A B ). Тогда по определению

    p (A B ) =
    . (1.7)

    Пример 1.17. Подбрасывают два кубика. Пространство элементарных событий состоит из упорядоченных пар чисел

    (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

    (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

    (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

    В примере 1.16 было установлено, что событие A ={число очков на первом кубике > 4} и событие C ={сумма очков равна 8} зависимы. Составим отношение

    .

    Это отношение можно интерпретировать следующим образом. Допустим, что о результате первого бросания известно, что число очков на первом кубике > 4. Отсюда следует, что бросание второго кубика может привести к одному из 12 исходов, составляющих событие A :

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) .

    При этом событию C могут соответствовать только два из них (5,3) (6,2). В этом случае вероятность события C будет равна
    . Таким образом, информация о наступлении событияA оказала влияние на вероятность события C .

          Вероятность произведения событий

    Теорема умножения

    Вероятность произведения событий A 1 A 2 A n определяется формулой

    p (A 1 A 2 A n ) = p (A 1) p (A 2 A 1))p (A n A 1 A 2 A n- 1). (1.8)

    Для произведения двух событий отсюда следует, что

    p (AB ) = p (A B) p {B ) = p (B A ) p {A ). (1.9)

    Пример 1.18. В партии из 25 изделий 5 изделий бракованных. Последовательно наугад выбирают 3 изделия. Определить вероятность того, что все выбранные изделия бракованные.

    Решение. Обозначим события:

    A 1 = {первое изделие бракованное},

    A 2 = {второе изделие бракованное},

    A 3 = {третье изделие бракованное},

    A = {все изделия бракованные}.

    Событие А есть произведение трех событий A = A 1 A 2 A 3 .

    Из теоремы умножения (1.6) получим

    p (A ) = р( A 1 A 2 A 3 ) = p (A 1) p (A 2 A 1))p (A 3 A 1 A 2).

    Классическое определение вероятности позволяет найти p (A 1) – это отношение числа бракованных изделий к общему количеству изделий:

    p (A 1)= ;

    p (A 2)это отношение числа бракованных изделий, оставшихся после изъятия одного, к общему числу оставшихся изделий:

    p (A 2 A 1))= ;

    p (A 3) – это отношение числа бракованных изделий, оставшихся после изъятия двух бракованных, к общему числу оставшихся изделий:

    p (A 3 A 1 A 2)=.

    Тогда вероятность события A будет равна

    p (A ) ==
    .

    Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

    Чтобы верно определить проходимость, нужно сделать три шага:

    • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
    • Вычислить вероятность по статистическим данным самостоятельно;
    • Узнать ценность ставки, учитывая обе вероятности.

    Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

    Быстрый переход

    Подсчёт вероятности, заложенной в букмекерские коэффициенты

    Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

    P Б =(1/K)*100%,

    где P Б – вероятность исхода по мнению букмекерской конторы;

    K – коэффициент БК на исход.

    Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

    Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

    Расчёт вероятности события игроком

    Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

    P И =(УМ/М)*100%,

    где P И – вероятность события по мнению игрока;

    УМ – количество успешных матчей, в которых такое событие происходило;

    М – общее количество матчей.

    Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

    И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

    Определение ценности ставки

    Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

    V= P И *K-100%,

    где V – ценность;

    P И – вероятность исхода по мнению беттера;

    K – коэффициент БК на исход.

    Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

    Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

    Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

    Экспериментальная и теоретическая вероятность

    Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
    503/1000, или 0,503.

    Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

    1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

    2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

    3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

    Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

    1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

    2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

    Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

    Вычисление экспериментальных вероятностей

    Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

    Принцип P (экспериментальный)

    Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

    Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

    a) Определите вероятность того, что человек - правша.

    b) Определите вероятность того, что человек - левша.

    c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

    d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

    Решение

    a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
    P = 82/100, или 0,82, или 82%.

    b) Вероятность того, что человек левша, есть Р, где
    P = 17/100, или 0,17, или 17%.

    c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
    P = 1/100, или 0,01, или 1%.

    d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
    17% от 120 = 0,17.120 = 20,4,
    то есть мы можем ожидать, что около 20 игроков являются левшами.

    Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
    Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

    a) Какова вероятность того, что семя прорастет?

    b) Отвечают ли семена государственным стандартам?

    Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
    P = 417/500 = 0,834, или 83.4%.

    b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

    Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

    Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
    P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
    Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
    P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
    Эти проценты называются рейтингами.

    Теоретическая вероятность

    Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

    Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

    b) Пространство исходов

    Решение
    a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

    b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

    Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


    Предположим, что мы бросаем игральную кость. Найдите
    a) Исходы
    b) Пространство исходов

    Решение
    a) Исходы: 1, 2, 3, 4, 5, 6.
    b) Пространство исходов {1, 2, 3, 4, 5, 6}.

    Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

    Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

    Принцип P (Теоретический)

    Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
    P(E) = m/n.

    Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

    Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

    Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

    Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

    Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

    Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

    Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
    P(вытягивания туза) = 4/52, или 1/13.

    Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

    Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
    P(выбора красного шарика) = 3/7.

    Следующие утверждения - это результаты из принципа P.

    Свойства вероятности

    a) Если событие E не может случиться, тогда P(E) = 0.
    b) Если событие E случиться непременно тогда P(E) = 1.
    c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

    Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

    Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

    Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
    P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

    Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

    Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
    P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

    Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

    Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

    Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

    Это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений. Такая трактовка допустима в случае достаточно большого количества наблюдений или опытов. Например, если среди встреченных на улице людей примерно половина - женщины, то можно говорить, что вероятность того, что встреченный на улице человек окажется женщиной, равна 1/2. Другими словами, оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента .

    Вероятность в математике

    В современном математическом подходе классическая (то есть не квантовая) вероятность задаётся аксиоматикой Колмогорова . Вероятностью называется мера P , которая задаётся на множестве X , называемом вероятностным пространством . Эта мера должна обладать следующими свойствами:

    Из указанных условий следует, что вероятностная мера P также обладает свойством аддитивности : если множества A 1 и A 2 не пересекаются, то . Для доказательства нужно положить все A 3 , A 4 , … равными пустому множеству и применить свойство счётной аддитивности.

    Вероятностная мера может быть определена не для всех подмножеств множества X . Достаточно определить её на сигма-алгебре , состоящей из некоторых подмножеств множества X . При этом случайные события определяются как измеримые подмножества пространства X , то есть как элементы сигма-алгебры .

    Вероятность смысле

    Когда мы находим, что основания для того, чтобы какой-нибудь возможный факт произошел в действительности, перевешивают противоположные основания, мы считаем этот факт вероятным , в противном случае - невероятным . Этот перевес положительных оснований над отрицательными, и наоборот, может представлять неопределённое множество степеней, вследствие чего вероятность невероятность ) бывает большею или меньшею .

    Сложные единичные факты не допускают точного вычисления степеней своей вероятности, но и здесь важно бывает установить некоторые крупные подразделения. Так, например, в области юридической , когда подлежащий суду личный факт устанавливается на основании свидетельских показаний, он всегда остаётся, строго говоря, лишь вероятным, и необходимо знать, насколько эта вероятность значительна; в римском праве здесь принималось четверное деление: probatio plena (где вероятность практически переходит в достоверность ), далее - probatio minus plena , затем - probatio semiplena major и, наконец, probatio semiplena minor .

    Кроме вопроса о вероятности дела, может возникать, как в области права, так и в области нравственной (при известной этической точке зрения) вопрос о том, насколько вероятно, что данный частный факт составляет нарушение общего закона. Этот вопрос, служащий основным мотивом в религиозной юриспруденции Талмуда , вызвал и в римско-католическом нравственном богословии (особенно с конца XVI века) весьма сложные систематические построения и огромную литературу, догматическую и полемическую (см. Пробабилизм) .

    Понятие вероятности допускает определенное численное выражение в применении лишь к таким фактам, которые входят в состав определенных однородных рядов. Так (в самом простом примере), когда кто-нибудь бросает сто раз кряду монету, мы находим здесь один общий или большой ряд (сумма всех падений монеты), слагающийся из двух частных или меньших, в данном случае численно равных, рядов (падения «орлом» и падения «решкой»); Вероятность, что в данный раз монета упадет решкой, то есть что этот новый член общего ряда будет принадлежать к этому из двух меньших рядов, равняется дроби, выражающей численное отношение между этим малым рядом и большим, именно 1/2, то есть одинаковая вероятность принадлежит к тому или другому из двух частных рядов. В менее простых примерах заключение не может быть выведено прямо из данных самой задачи, а требует предварительной индукции . Так, например, спрашивается: какая вероятность существует для данного новорожденного дожить до 80 лет? Здесь должно составить общий, или большой, ряд из известного числа людей, рожденных в подобных же условиях и умирающих в различном возрасте (это число должно быть достаточно велико, чтобы устранить случайные отклонения, и достаточно мало, чтобы сохранялась однородность ряда, ибо для человека, рождённого, например, в Санкт-Петербурге в обеспеченном культурном семействе, всё миллионное население города, значительная часть которого состоит из лиц разнообразных групп, могущих умереть раньше времени - солдат, журналистов, рабочих опасных профессий, - представляет группу слишком разнородную для настоящего определения вероятности); пусть этот общий ряд состоит из десяти тысяч человеческих жизней; в него входят меньшие ряды, представляющие число доживающих до того или другого возраста; один из этих меньших рядов представляет число доживающих до 80 лет. Но определить численность этого меньшего ряда (как и всех других) невозможно a priori ; это делается чисто индуктивным путем, посредством статистики . Положим, статистические исследования установили, что из 10000 петербуржцев среднего класса до 80 лет доживают только 45; таким образом, этот меньший ряд относится к большому, как 45 к 10000, и вероятность для данного лица принадлежать к этому меньшему ряду, то есть дожить до 80 лет, выражается дробью 0,0045. Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей .

    См. также

    Примечания

    Литература

    • Альфред Реньи. Письма о вероятности / пер. с венг. Д.Сааса и А.Крамли под ред. Б. В. Гнеденко. М.: Мир. 1970
    • Гнеденко Б. В. Курс теории вероятностей. М., 2007. 42 с.
    • Купцов В. И. Детерминизм и вероятность. М., 1976. 256 с.

    Wikimedia Foundation . 2010 .

    Синонимы :

    Антонимы :

    Смотреть что такое "Вероятность" в других словарях:

      Общенаучная и филос. категория, обозначающая количественную степень возможности появления массовых случайных событий при фиксированных условиях наблюдения, характеризующую устойчивость их относительных частот. В логике семантическая степень… … Философская энциклопедия

      ВЕРОЯТНОСТЬ, число в интервале от нуля до единицы включительно, представляющее возможность свершения данного события. Вероятность события определяется как отношение числа шансов того, что событие может произойти, к общему количеству возможных… … Научно-технический энциклопедический словарь

      По всей вероятности.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. вероятность возможность, вероятие, шанс, объективная возможность, маза, допустимость, риск. Ant. невозможность… … Словарь синонимов

      вероятность - Мера того, что событие может произойти. Примечание Математическое определение вероятности: «действительное число в интервале от 0 до 1, относящееся к случайному событию». Число может отражать относительную частоту в серии наблюдений… … Справочник технического переводчика

      Вероятность - «математическая, числовая характеристика степени возможности появления какого либо события в тех или иных определенных, могущих повторяться неограниченное число раз условиях». Если исходить из этого классического… … Экономико-математический словарь

      - (probability) Возможность наступления какого либо события или определенного результата. Может быть представлена в виде шкалы с делениями от 0 до 1. При нулевой вероятности события его наступление невозможно. При вероятности, равной 1, наступление … Словарь бизнес-терминов

    ddvor.ru - Одиночество и расставания. Популярные вопросы. Эмоции. Чувства. Личные отношения